K. T. S. P. Mandal's Hutatma Rajguru Mahavidyalaya , Rajgurunagar Department Of Statistics Syllabus Completion Report Academic Year 2018-19

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.Sc	Descriptive Statistics	Thorat S.R.
2	F.Y.B.Sc	Discrete Probability Distributions	Thorat S.R.

Paper : Descriptive Statistics

Class: F.Y.B.Sc

Month	Торіс	Subtopic
June/July	1.	1.1 Meaning of Statistics as a Science.
2018	Introduction	1.2 Importance of Statistics.
	to	1.3 Scope of Statistics:
	Statistics	1.4 Statistical organizations in India and their
		functions:
		2.1 Types of characteristics:
	2. Population	2.2 Types of data:
	and Sample	2.3 Notion of a statistical population
		2.4 Methods of sampling
August 2018	3. Summary	3.1 Classification
	Statistics	3.2 Measures of Central Tendency
		Arithmetic Mean (A.M.), median, mode
		Partition Values: Quartiles, Deciles and Percentiles
		Geometric Mean, Harmonic Mean, Weighted Mean
		3.3 Measures of Dispersion
		Range, Semi-interquartile range,
		Mean deviation, Variance and standard deviation, Mean
		squared deviation coefficient of variation

Sept/Oct	4. Moments,	4.1 Raw moments (m'r) for ungrouped and grouped data
2018	Skewness and	4.2 Central moments (mr) for ungrouped and grouped data
_010	Kurtosis	4.3 Relations between central moments and raw moments,
		upto 4-th order
		4.4 Concept of skewness of frequency distribution, positive
		skewness, negative
		skewness, symmetric frequency distribution.
		4.5 Bowley's coefficient of skewness
		4.6 Karl Pearson's coefficient of skewness.
		4.7 Measures of skewness based on moments (β 1, γ 1).
		4.8 Concepts of kurtosis, leptokurtic, mesokurtic and
		platykurtic frequency
		distributions.
		4.9 Measures of kurtosis based on moments ($\beta 2, \gamma 2$).
Nov/ Dec	5. Theory of	5.1 Attributes:
2018	Attributes	5.2 Consistency of data upto 2 attributes.
		5.3 Concepts of independence and association of two
		attributes.
		5.4 Yule's coefficient of association (Q), $-1 \le Q \le 1$,
		interpretation.
Feb	6. Correlation	6.1 Bivariate data, Scatter diagram and interpretation.
2019		6.2 Concept of correlation between two variables
		6.3 Covariance between two variables (m11) :
		6.4 Karl Pearson's coefficient of correlation (r)
		6.5 Spearman's rank correlation coefficient:
		compute Karl Pearson's correlation coefficient between
		ranks.
	7 1	
	7. Linear	7.1 Meaning of regression
	Regression	7.2 Simple linear regression model: $Y = a + b X + \varepsilon$
	Model	7.3 Concept of residual, plot of residual, coefficient of determination
Fab/Mar		
Feb/Mar	8. Fitting of curves to the	8.1 Fitting of line $(Y = a + b X)$, 8.2 Fitting of second degree curve
2019		8.2 Fitting of second degree curve
	bivariate data	8.3 Fitting of exponential uncorrelatedness of two variables.
	Fitting of	8.6 Variance of linear combination of variables
	curves to the	
	bivariate data	Var(aX + bY).Correlation coefficient

	9.1 Introduction.
9 Index	9.2 Definition and Meaning.
Numbers	9.3 Problems/considerations in the construction of index
	numbers.
	9.4 Simple and weighted price index
	9.5 Simple and weighted price index
	9.6 Laspeyre's, Paasche's and Fisher's Index numbers.
	9.7 Consumer price index number
	(i) family budget method
	(ii) aggregate expenditure method.
	9.8 Shifting of base, splicing, deflating, purchasing power.
	9.9 Description of the BSE sensitivity and similar index
	numbers.

Paper : Discrete Probability and probability Distributions

Class: F.Y.B.Sc

Month	Topic	Subtopic
June/July	1. Review of	1.1 Experiments/Models, Ideas of deterministic and
2018	probability,	non-deterministic models.
	conditional	Random Experiment, concept of statistical regularity.
	probability,	1.2 Definitions of - (i) Sample space,
	independence	(ii) Discrete sample space: finite and countably
		infinite, (iii) Event, (iv) Elementary event,
		(v) Complement of an event. (vi) Certain event
		(vii) Impossible event
		1.3 Concept of occurrence of an event.
		1.4 Algebra of events and its representation in set
		theory notation.
		Occurrence of
		following events.
		(i) at least one of the given events,
		(ii) none of the given events,
		(iii) all of the given events,
		(iv) mutually exclusive events,
		(v) mutually exhaustive events,
		(vi) exactly one event out of the given events.

		1.5 Classical definition of probability and its limitations. 1.6 Probability model, probability of an event, equiprobable and non-equiprobable sample space, 1.7 Axiomatic definition of probability. 1.8 Definition of conditional probability of an event. 1.9 Definition of independence of two events $P(A \cap B) = P(A) \cdot P(B)$ 1.10 Pairwise independence and mutual independence for three events 1.11 Multiplication theorem $P(A \cap B) = P(A) \cdot P(B A)$. Generalization to $P(A \cap B \cap C)$.
August 2018	2. Bayes' Theorem	2.1 Partition of the sample space2.2 Proof of Bayes' theorem. Applications of Bayes' theorem in real life
	3. Univariate Probability Distributions (Defined on Discrete Sample Space)	 3.1 Concept and definition of a discrete random variable. 3.2 Probability mass function (p.m.f.) and cumulative distribution function (c.d.f.), F(·) of discrete random variable, properties of c.d.f 3.3 Mode and median of a univariate discrete probability distribution
Septmber 2018	4. Mathematical Expectation (Univariate Random Variable)	 4.1 Definition of expectation (Mean) of a random variable, expectation of a function of a random variable, m.g.f. and c.g.f. Properties of m.g.f and c.g.f. 4.2 Definitions of variance, standard deviation (s.d.) and Coefficient of variation (c.v.) of univariate probability distribution, effect of change of origin and scale on mean, variance and s.d. 4.3 Definition of raw, central and factorial raw moments of univariate probability Distributions and their interrelations (without proof). 4.4 Coefficients of skewness and kurtosis based on moments.

October	5. Some	5.1 Deconstrate distribution mean and variance	
		5.1 Degenerate distribution, mean and variance	
2018	Standard	5.2 Uniform discrete distribution, p.m.f., c.d.f., mean,	
	Discrete	variance,	
	Probability	real life situations, comments on mode and median	
	Distributions - I	5.3 Bernoulli Distribution: p.m.f., mean, variance	
		5.4 Binomial Distribution: p.m.f., mean, variance	
		5.5 Hypergeometric Distribution : p.m.f., Computation	
		of probability, situations where this distribution is	
		applicable,	
		binomial approximation to hypergeometric	
		probabilities, mean and variance of	
		the distribution	
Nov/ Dec	6. Some	6.1 Poisson distribution:	
2018	Standard	m.g.f. and c.g.f. Moments, mean, variance, skewness	
	Discrete	and kurtosis	
	Probability	6.2 Geometric distribution:	
	Distributions -	Mean, variance, m.g.f. and c.g.f.	
	II		
Feb	7. Bivariate	7.1 Definition of two-dimensional discrete random	
2019	Discrete	variable, its joint p.m.f. and its distribution function	
	Probability	and their properties	
	Distribution	7.2 Computation of probabilities of events in bivariate	
		probability distribution.	
		7.3 Concepts of marginal and conditional probability	
		distributions.	
		7.4 Independence of two discrete random variables	
		based on joint and marginal p.m.f.s	
Feb/Mar	8. Mathematical		
2019	Expectation	8.2 Theorems on expectations	
	(Bivariate	.8.3 Conditional expectation.	
	Random	8.4 Definitions of conditional mean and conditional	
	Variable)	variance.	
		8.5 Definition of covariance, coefficient of correlation,	
		independence and	
		uncorrelatedness of two variables.	
		8.6 Variance of linear combination of variables	
		Var($aX + bY$).Correlation coefficient	
L		Thorat S R	

Thorat S.R.

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.C.S.	Statistical Methods-I	Wayal.V.M
2	S.Y.B.Sc	Continuous Probability Distributions-I	Wayal.V.M
	(Sem-I)		
3	S.Y.B.Sc	Sampling distributions and Inference	Wayal.V.M
	(Sem-I)		
4	F.Y.B.C.A	Computer Applications in Statistics	Wayal.V.M

Paper: Statistical Methods-I

Class: F.Y.B.C.S

Month	Торіс	Subtopic
July 2018	1.Data Condensation	1.1 Raw data, attributes and variables, discrete and continuous variables.
	and graphical methods	 1.2 Presentation of data using frequency distribution and cumulative frequency distribution 1.3 Graphical presentation of frequency distribution- histogram, stem and leaf chart, less than and more than ogive curves.
		1.4 Numerical problems related to real life situations.
	2. Review/ Revision of Descriptive Statistics	 2.1 Measures of central tendency: Mean, Mode, Median Examples where each of these is most appropriate 2.2 Partition values: Quariles, Deciles, Percentiles, Box plot 2.3 Measures of Dispersion: Variance, Standard deviation, Coefficient of variation
August 2018	3.Moments	 3.1 Raw and central moments 3.2 Relation between raw and central values upto fourth order 3.3 Numerical problems related moments 3.1 Concept and definition of a discrete random variable.
	4. Measures of Skewness and Kurtosis	4.1 Concept of symmetric frequency distribution, skewness, positive and negative skewness4.2 Measures of skewness- Pearson's measure,

	Discrete Sample	Bowley's measure (β_1, γ_1)	
	Space)	4.3 kurtosis of a frequency distribution, Measures of	
		kurosis (β_2 , γ_2) based upon moments, types of kurtosis:	
		(β_1, γ_1) tokurtic, platykurtic, mesokurtic	
		4.5 Numerical problems	
Septmber	5. Discrete	5.1 Definition of random variable and discrete random	
2018	Random	variable	
	Variable	5.2 Definition of probability mass function, distribution	
		function and its properties	
		5.3 Definition of expectation and variance, theorem on	
		expectation	
		5.4 Determination of median and mode using p.m.f.	
		5.5 Numerical problems	
Sept/Oct	6. Standard	6.1 Discrete Uniform Distribution: definition, mean,	
2018	Discrete	variance	
	Distributions	6.2 Bernoulli Distribution	
		6.3 Binomial Distribution	
		6.4 Geometric Distribution:	
		6.5 Poisson Distribution:	
		6.6 Illustration of real life situations	
		6.7 Numerical problems	
Nov/ Dec	7. Correlation	7.1 Bivariate data, scatter diagram	
2018	(for bivariate	7.2 correlation	
	raw data)	7.3 Karl Pearson's coefficient of correlation, limit of r	
		7.4 interpretation of r, coefficient of determination,	
		Auto correlation	
		7.5 Numerical problems	
Dec	8.Regression	8.1 Regression	
2018		8.2 linear Regression	
		8.3 Fitting of straight line using least square method	
		8.4 Properties of Regression coefficients	
		8.5 Non linear Regression: second degree curve,	
		growth curve	
		8.6 Residual plot, mean residual sum of squares	
T (T) T		8.7 Numerical problems	
Jan/Feb	9. Multiple and		
2019	partial	9.2 Fitting of multiple Regression plane	
	correlation and	9.3 Partial Regression coefficient	
	Regression (for	9.4 Multiple correlation coefficient	
	trivariate data)	9.5 Partial correlation coefficient	

		9.6 Numerical problems
Feb 2019	10. Time Series	10.1 Meaning and utility
		10.2 Component of Time series
		10.3 Additive and Multiplicative models
		10.4 Methods of estimating trend : moving average
		method, least square method and exponential
		smoothing method
		10.5 Elimination of trend using additive and
		multiplicative models
		10.6 Simple time series models
		10.7 Numerical problems

Paper : Continuous Probability Distributions-I

Class: S.Y.B.Sc (Sem-I)

Month	Торіс	Subtopic	
July 2018	1.Continuous	1.1 Continuous sample space: Definition, illustrations.	
	Univariate	Continuous random variable: Definition, probability	
	Distributions:	density function (p.d.f.), cumulative distribution	
		function (c.d.f.), properties of c.d.f. (without proof),	
		probabilities of events related to random variable.	
		1.2 Expectation of continuous r.v., expectation of	
		function of r.v. E[g(X)], mean, variance, geometric	
		mean, harmonic mean, raw and central moments,	
		skewness, kurtosis.	
		1.3 Moment generating function(M.G.F.):Definition	
		and properties, cumulant generating function (C. G. F.)	
		: definition, properties.	
		1.4 Mode, median, quartiles.	
		1.5 Probability distribution of function of r. v.: Y =	
		g(X) using i) Jacobian of transformation for g(.)	
		monotonic function and one-to-one, on to functions,	
		ii) Distribution function for $Y = X^2$, $Y = X $ etc.,	
		iii) M.G.F. of g(X).	
August 2018	2.Continuous	2.1 Continuous bivariate random vector or variable	
	Bivariate	b(X, Y): Joint p. d. f., joint c. d. f, properties (without	
	Distributions:	proof), probabilities of events related to r.v. (events in	

		terms of regions bounded by regular curves, circles, straight lines). Marginal and conditional distributions. 2.2 Expectation of r.v., expectation of function of r.v. E[g(X, Y)], joint moments, Cov (X,Y), Corr (X, Y), conditional mean, conditional variance, E[E(X Y = y)] = E(X), regression as a conditional expectation.
		2.3 Independence of r. v. (X, Y) and its extension to k dimensional r. v. Theorems on expectation: i) $E(X + Y)$ = $E(X) + E(Y)$, (ii) $E(XY) = E(X) E(Y)$, if X and Y are independent, generalization to k variables. E(aX + bY + c), Var ($aX + bY + c$).
		2.4 M.G.F. : $M_{X,Y}(t_1, t_2)$, properties, M.G.F. of marginal distribution of r. v.s., properties
		$M_{X,Y}(t_1, t_2) = M_X(t_1, 0) M_Y(0, t_2)$, if X and Y are independent r. v.s., $M_{X+Y}(t) = M_{X,Y}(t, t)$,
		$M_{X+Y}(t) = M_X(t) M_Y(t)$ if X and Y are independent r.v.s. 2.5 Probability distribution of transformation of bivariate $U = f_1(X,Y)$, $V = f_2(X,Y)$.
Septmber 2018	3.Standard Univariate Continuous Distributions:	3.1 Uniform or Rectangular Distribution: Probability density function (p.d.f.) Notation : $X \sim U[a, b]$. p. d. f., sketch of p. d. f., c. d. f., mean, variance, symmetry. Distribution of i) $X - a$, ii) $b - X$, iii) $Y = F(X)$, where $F(X)$ is the c. d. f. of continuous r. v. X. Application of the result to model sampling. (Distributions of $X + Y$, $X - Y$, XY and X/Y are not expected.)

	3.2 Normal Distribution:
	 p. d. f. curve, identification of scale and location parameters, nature of probability curve, mean, variance, M.G.F., C.G.F., central moments, cumulants, b₁, b₂, g₁, g₂, median, mode, quartiles, mean deviation, additive property, computations of normal probabilities using normal probability integral tables, probability distribution of : i) ^{X - m}, ii) aX + b, iii) aX + bY + c, iv) X², where X and Y are independent normal variates. Probability distribution of X, the mean of n i. i. d. N (m, s²) r. v s. Normal probability plot, q-q plot to test normality. Model sampling from Normal distribution using (i) Distribution function method and (ii) Box-Muller transformation as an application of simulation. Statement and proof of central limit theorem (CLT) for i. i. d. r. v. s with finite positive variance. (Proof should be using M.G.F.) Its illustration for Poisson and Binomial distributions.
	Probability density function (p. d. f.)
	Nature of p. d. f., density curve, interpretation of a as rate and 1 / a as mean, mean, variance, M. G. F., C. G. F., c. d. f., graph of c. d. f., lack of memory property, median, quartiles. Distribution of min(X, Y) with X, Y i. i. d. exponential r. v. s.
Sept/Oct	3.4 Gamma Distribution:
2018	Probability density function (p. d. f.)
	Nature of probability curve, special cases: i) $a = 1$, ii) $l = 1$, M. G. F., C. G. F., moments, cumulants, b_1 , b_2 , g_1 , g_2 , mode, additive property. Distribution of sum of n i. i. d. exponential variables. Relation between distribution function of Poisson and Gamma variates.

Month	Торіс	Subtopic
Dec 2018	1.Chi-square Distribution 2.Student's t- distribution	Definition of Chi-squarer. v. as sum of squares of i. i. d. standard normal variables Derivation of p. d. f. of with n degrees of freedom (d. f.) using M. G. F., nature of p. d. f. curve, computations of probabilities using tables of distribution. mean, variance, M. G. F., C. G. F., central moments, mode, additive property. χ_n Definition of T r. v. with n d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode, use of tables of t-distribution for calculation of probabilities, statement of normal approximation.
Jan 2019	3.Snedecore's F-distribution:	Definition of F r. v. with n_1 and n_2 d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode. Distribution of 1/F use of tables of F-distribution for calculation of probabilities. Interrelations between Chi-Square , T and F distribution.
	4. Sampling Distributions:	Random sample from a distribution as i. i. d. r. v.s. Sampling distribution of a statistic. Distribution of sample mean from normal, exponential and gamma distribution, Notion of standard error of a statistic. Independence of \overline{X} and S ²
Feb/March	5.Test of	Tests based on chi-square distribution:
2019	Hypothesis:	Test for independence of two attributes arranged in 2 X2 contingency table. (With Yates' correction).Test for independence of two attributes arranged in r X
		s contingency table, McNemar's test Test for 'Goodness of Fit'. (Without rounding-off the

expected frequencies).
d) Test for population variance equal to specified value. when i) mean is known, ii) mean is unknown. Tests based on t-distribution:
t-tests for population means : i) one sample and two sample tests for one sided and two sided alternatives.Confidence interval.Paired t-test for one-sided and two-sided alternatives.
Test based on F-distribution: Test for equality of two population variance. when i) means are known, ii) means are unknown.

Month	Торіс	Subtopic
December 2018	1. Methods of counting and Fundamental Principals of Counting	 Principals of counting Permutations and combinations Examples and problems
	2. Elements of Probability Theory	 Random experiments, sample space, events, algebra of events. Classical definition of probability, addition theorem of probability, Independence of events, Simple numerical problems.
Jan / Feb 2019	3.Standard Discrete Distributions	 1.Disctrete Uniform : Probability Distribution, c.d.f. mean ,variance(without proof) 2.Bernoulli : probability distribution , mean, variance 3. Binomial : probability distribution, c.d.f., mean, variance, 4. Examples and problems.
March 2019	4.Simulation Techniques	 Random Number Generator Model sampling from discrete uniform and binomial distributions Monte Carlo Simulation examples and problems.

Wayal V.M.

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.C.S.	Statistical Methods-II	Shah N.S.
2	S.Y.B.Sc	Discrete Probability Distributions,	Shah N.S.
	(Sem-I)	Time series and R software	
3	S.Y.B.Sc	Statistical Methods and Use of R	Shah N.S.
	(Sem-II)	software	
4	F.Y.B.Com	Business Mathematics and Statistics	Shah N.S.

Paper : Statistical Methods-II

Class: F.Y.B.C.S

Month	Торіс	Subtopic	
July 2018	1. Detailed	1.1 Counting Principles, Permutation, and	
	Review /	Combination.	
	Revision of	1.2 Deterministic and non-determination models.	
	Theory of	1.3 Random Experiment, Sample Spaces (finite and	
	Probability	countably infinite)	
		1.4 Events: types of events, Operations on events. 1.5 Probability - classical definition, probability models, axioms of probability, probability of an event. 1.6 Theorems of probability (with proof) i) $0 \le P(A) \le$ 1 ii) $P(A) + P(A') = 1$ iii) $P(A) \le P(B)$ when $A \subset B$ iv) $P(A \cup B) = P(A) + P(B) - P(A B)$ 1.7 Numerical problems related to real life situations	
August 2018	2. Advanced	2.1Concepts and definitions of conditional probability,	
	Theory of	multiplication theorem $P(A \cap B) = P(A) \cdot P(B A)$	
	Probability	2.2 Bayes' theorem (without proof)	
		2.3 Concept of Posterior probability, problems on	
		posterior probability.	
		2.4 Definition of sensitivity of a procedure, specificity	
		of a procedure. Application of Bayes' theorem to	
		design a procedure for false positive and false negative.	
		2.5 Concept and definition of independence of two	
		events.	
		2.6 Numerical problems related to real life situations.	

Sept /Oct	3. Continuous	3.1 Definition of continuous random variable (r. v.),
2018 Random		3.2 Probability density function (p.d.f.),
	Variable	3.3 Cumulative distribution function (c.d.f.), its
		properties.
		3.4 Calculation of mean, mode, median, variance,
		standard deviation for continuous r. v.
		3.5 Numerical problems related to real life situations
Dec 2018	4.Standard	1.Uniform Distribution: p.d.f., mean, variance, nature
	Continuous	of probability curve.
	Probability	2. Exponential Distribution: p.d.f., mean, variance,
	Distributions	nature of probability curve, lack of memory property.
		3. Normal Distribution: Statement of p.d.f, nature of
		density curve, standard normal distribution, symmetry,
		computations of probabilities using normal probability
		table, normal approximation to binomial and poisson
		distribution, Central limit theorem, normal probability
		plot.
	5.Concepts and	4. Pareto Distribution: p.d.f., mean, variance, applications
	Definitions	5. Numerical problems related to real life situations.
	Related to	5. Ivalienteur problems feluted to feur me situations.
	testing of	1.Definitions: population, statistics, RSWR, SRSWOR,
	Hypothesis	Random sample, parameter, statistic, standard error of estimator.
		2. Concepts: null hypothesis, alternative hypothesis,
		critical region, level of significance, type I error, type II
		error, one and two sided tests, p-value.
Jan 2019	6. Large	1. Test for population mean
	Sample Tests	2. Test for equality of two population mean
		3. Test for population proportion
		4. Test for equality of population proportion
		5. Numerical problems related to real life situations.
	7.Test based on	1. One sample test concerning mean
	t-distribution	2. Testing for equality of means of two populations
		3. Paired t-test

		 4. Test for significance of correlation coefficient for bivariate raw data 5. Test for significance of regression coefficient for bivariate raw data 5. Numerical problems related to real life situations.
Feb 2019	8. Test based on Chi-square distribution	 chi-square test for goodness of fit Test for independence of attributes. Test for significance of variation for a population. Numerical problems related to real life situations.
	9.Non parametric tests	 Run test Sign test Kolmogrov-Smirnov test Mann-whitney test Numerical problems related to real life situations.
	10. Simulation	 Introduction, merits and demerits and pitfall Psedo-random number generator Model Sampling from uniform and exponential distribution

Paper : Discrete Probability Distributions, Time series and R software

Class: S.Y.B.Sc (Sem-I)

Month	Торіс	Subtopic
July 2018	1. Statndard	1.1 Negative Binomial Distribution:
	Discrete Distributions	Probability mass function (p. m. f.)
		Notation: X ~ NB (k, p).
		Nature of p. m. f., negative binomial distribution as a waiting time distribution, M.G.F., C.G.F., mean,

		variance, skewness, kurtosis (recurrence relation between moments is not expected). Relation between geometric and negative binomial distribution. Poisson approximation to negative binomial distribution. Real life
August 2018	2. Advanced Theory of Probability	1.2 Multinomial Distribution: Probability Mass function, Notation use of MGF to obtain means, variances, covariances, total correlation coefficients, multiple and partial correlation coefficients for k= 3, univariate marginal distribution, distribution of $X_i + X_j$, conditional distribution of X_i given $X_i + X_j = r$, variance – covariance matrix, rank of variance – covariance matrix and its interpretation and real life situations and applications. 1.3 Truncated Distributions:
		Concept of Truncated distribution, truncation to the right, left and on both sides. Binomial distribution B(n, p) left truncated at X=0 (value zero is discarded), its p.m.f., mean, variance . Poisson distribution P(m) left truncated at X=0 (value zero is discarded), its p.m.f., mean, variance. Real life situations and applications.
Sept /Oct 2018	3. Fundamentals of R-Software:	 3.1 Introduction to R, features of R, starting and ending R session, getting help in R, R commands and case sensitivity. 3.2 Vectors and vector arithmetic creation of vectors using functions c, seq, rep Arithmetic operations on vectors using operators +, - , *, /, ^.

	un	umerical functions: log10, log, sort, max, min, nique, range, length, var, prod, sum, summary, venum etc.
2.Time	Series: ac	ccessing vectors
		3 Data frames : creation using data.frame, subset and ansform commands.
	3.4	4 Resident data sets : Accession and summary
	3.:	5 p, q, d, r functions.
	tir va 2.2 ch ho 2.2 mo pr 2.4 av ii) wl	 Meaning and utility of time series, Components of me series: trend, seasonal variations, cyclical ariations, irregular (error) fluctuations or noise. Exploratory data analysis: Time series plot to (i) neck any trend, seasonality in the time series (ii) learn ow to capture trend. Methods of trend estimation and smoothing: (i) oving average, (ii) curve fitting by least square inciple, (iii) exponential smoothing. Measurement of seasonal variations : i) simple verage method, ratio to moving average method, iii) ratio to trend here trend is calculated by method of least squares. Choosing parameters for smoothing and
	fo	6 Forecasting based on exponential smoothing.
	2.	7 Double exponential smoothing i.e. Holt-Winters ethod
		8 Fitting of autoregressive model AR (1), plotting of siduals.
	2.9	9 Data Analysis of Real Life Time Series:

Paper : Statistical Methods and Use of R software

Class: S.Y.B.Sc (Sem-II)

Month	Topic	Subtopic
Dec 2018	I) Multiple	Definition of multiple correlation coefficient $RY_{.XX}$.
	Linear Regression Model:	Derivation of the expression for the multiple correlation coefficient. Properties of multiple correlation coefficient ¹² Interpretation of coefficient of multiple determination Definition of partial correlation coefficient Fitting of regression plane of Y on X ₁ and X ₂ ,by the method of least squares; obtaining normal equations, solutions of normal equations Residuals : Definition, order, derivation of variance, properties. Definition and interpretation of partial regression coefficients Properties of partial correlation coefficient:
Jan 2019	II) Tests of Hypothesis	 Statistics and parameters, statistical inference : problem of estimation and testing of hypothesis. Estimator and estimate. Unbiased estimator (definition and illustrations only). Statistical hypothesis, null and alternative hypothesis, Simple and composite hypothesis, one sided and two sided alternative hypothesis, critical region, type I error, type II error, power of the test, level of significance, p-value. Two sided confidence interval, finding probabilities of type I error and type II error when critical regions are specified . i) Test for population mean equal to specified value ii) Test for population proportion equal to specified value. iv) Test for equality of two population proportions.

T 1 / 1 / 1		
Feb/ March	III) Tests of	Drawing a sample from population using SRSWR,
2019	Hypothesis	SRSWOR.
	using R-	Tests: Z test, t test, F test and tests for proportions.
	Software	
	Survare	
	IV)	Vital events, vital statistics, methods of obtaining vital
	Dempgraphy	statistics, rates of vital events, sex ratios, dependency
	F 8 FJ	ratio.
		Death/Mortality rates: Crude death rate, specific (age,
		sex etc.) death rate, standardized death rate (direct and
		indirect), infant mortality rate.
		Fertility/Birth rate: Crude birth rate, general fertility
		rate, specific (age, sex etc.) fertility rates, total fertility
		rate.
		Growth/Reproduction rates : Gross reproduction rate,
		net reproduction rate.
		Interpretations of different rates, uses and applications.
		Trends in vital rates as revealed in the latest census.
	IV) Queuing	M/M/1: FIFO as an application of exponential
	Model	distribution, Poisson distribution and geometric
		distribution : Inter arrival rate , service rate (μ), traffic
		intensity, queue discipline probability distribution of
		number of customers in queue, average queue length,
		average waiting time in:
		•
		i) queue,
		ii) system.

Paper : Business Mathematics and Statistics

Class: F.Y.B.Com

Month	Торіс	Subtopic
July 2018	1-Preliminaries	Natural no & integers H.C.F & M.C.F fraction Laws of indices ratio & percentage, proportion
August 2018	2-Interest 3-Shares and Dividends	simple interest compound interest EMI Examples Concept of shares ,face value, market value , net asset value Equity shares and preference shares Dividend Bonus shares Examples
Sept 2018	 4-Population & sample 5-Measures of central tendency 	Definition & concept of statistics scope of statistics concept of population & sample sampling method Variables, classification of data frequency distribution graph mean , median & mode examples
Nov 2018	6-Profit and Loss	cost price, market, selling price trade & cash discount commission & brokerage examples

	7-Linear	Definition
	/-Linear	Definition
Dec 2018	programming	formulation of lpp
	problems	graphical method
		example
	8-measures of	concept of dispersion
	Dispersion	measures of dispersion
		measures of relative dispersion
		examples
Jan 2019	9- correlation &	Data, scatter diagram
	regression	Karl pearson's coefficient correlation
		rank correlation
		regression
		examples
Feb 2019	10-index	concept and construction of index number
	number	Laspeyers, paasches & fisher index no
		family budget & expenditure method
		sensex & nifty
		examples

Shah N.S.