K. T. S. P. Mandal's Hutatma Rajguru Mahavidyalaya , Rajgurunagar Department Of Statistics Syllabus Completion Report Academic Year 2019-20 Semester I

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.Sc	Descriptive Statistics I	Thorat S.R.
2	F.Y.B.Sc	Discrete Probability and	Thorat S.R.
		Probability Distributions I	
3	S.Y.B.Sc	Discrete Probability	Thorat S.R.
		Distributions, Time series and R	
		software	

Paper : Descriptive Statistics I.

Class: F.Y.B.Sc

Month	Торіс	Subtopic
June/July	1.	1.1 Meaning of Statistics as a Science.
2019	Introduction	1.2 Importance of Statistics.
	to	1.3 Scope of Statistics:
	Statistics	1.4 Statistical organizations in India and their
		functions:
	2. Population and Sample	2.1 Types of characteristics:2.2 Types of data:2.3 Notion of a statistical population2.4 Methods of sampling
	3.Presentation	3.1 Classification
	of data	3.2 Frequency Distribution
		3.3 Methods of classification
		3.4 Cumulative frequencies
		3.5 Relative frequency

		3.6 Guidelines for choice of classes
		3.7 Graphical representation of statistical data
		3.8 Stem and leaf chart
		3.9 Data Analysis and interpretation
		Sis Data Finaryolo and interpretation
August 2019	4. Measures	4.1 Introduction
	of central	4.2 Objectives of Measures of Central Tendency
	tendency	4.3 Arithmetic Mean (A.M.)
		4.4 Trimmed mean
		4.5 Median
		4.7 Geometric mean
		4.8 Mode Harmonic mean
		4.9 Weighted means
		4.9 Partition values
		4.10 Box and whisker plot
	5.36	
	5. Measures	5.1 Introduction
	of Dispersion	5.2 Measures of Dispersion
		5.3 Range and Coefficient of range
		5.4 Quartile deviation
		5.5 Mean deviation and coefficient of mean deviation
		5.6 Mean square deviation
		5.7 Variance, standard deviation, coefficient of variation
Sept 2019	6. Moments	6.1 Raw moments (m'r) for ungrouped and grouped data
Sept 2019	0. WIOMENUS	6.2 Central moments (mr) for ungrouped and grouped data
		6.3 Relations between central moments and raw moments,
		upto 4-th order
	7. Skewness	7.1 Concept of skewness of frequency distribution, positive
	and Kurtosis	skewness, negative skewness, symmetric frequency
		distribution.
		7.2 Bowley's coefficient of skewness
		7.3 Karl Pearson's coefficient of skewness.
		7.4 Measures of skewness based on moments (β 1, γ 1).

Oct 2019		 7.4 Concepts of kurtosis, leptokurtic, mesokurtic and platykurtic frequency distributions. 7.5 Measures of kurtosis based on moments (β2,γ2).
	8. Theory of Attributes	 8.1 Attributes: 8.2 Consistency of data upto 2 attributes. 8.3 Concepts of independence and association of two attributes. 8.4 Yule's coefficient of association (Q), -1 ≤ Q ≤ 1, interpretation.

Paper : Discrete Probability and probability Distributions I Class:F.Y.B.Sc

Month	Торіс	Subtopic
June/July 2019	1. Basics of Probability	1.1 Experiments/Models, Ideas of deterministic and non-deterministic models. Random Experiment, concept of statistical regularity. 1.2 Definitions of - (i) Sample space, (ii) Discrete sample space: finite and countably infinite, (iii) Event, (iv) Elementary event, (v) Complement of an event. (vi) Certain event (vii) Impossible event Concept of occurrence of an event. Algebra of events and its representation in set theory notation. Occurrence of following events. (i) at least one of the given events, (ii) none of the given events, (iii) all of the given events, (iv) mutually exclusive events, (v) mutually exclusive events, (v) mutually exclusive events, (vi) exactly one event out of the given events. 1.3 Classical definition of probability and its limitations. Probability model, probability of an event, equiprobable and non-equiprobable sample space, 1.4 Axiomatic definition of probability. Theorems And results on probability with proofs based on axoomatic approach. Such as, $P(AUB) = P(A) + P(B) - P(A \cap B)$ Generalisation $P(AUBUC), 0 \le P(A) \le 1, P(A) + P(A') = 1, P(\phi) = 0,$ $P(A) \le P(B)$ if A is subset of B, Boole's inequality
	2.Conditional Probability and Baye's theorem	2.1 Definition of conditional probability of an event. Definition of independence of two events $P(A \cap B) = P(A) \cdot P(B)$

		Pairwise independence and mutual independence for three events Multiplication theorem $P(A \cap B) = P(A) \cdot P(B A)$. Generalization to $P(A \cap B \cap C)$.
August 2019		 2.2 Partition of the sample space Proof of Bayes' theorem. Applications of Bayes' theorem in real life True Positive, False positive and sensitivity of test as application of Baye's theorem.
	3. Univariate Probability Distributions (Defined on Discrete Sample Space)	 3.1 Concept and definition of a discrete random variable. 3.2 Probability mass function (p.m.f.) and cumulative distribution function (c.d.f.), F(·) of discrete random variable, properties of c.d.f 3.3 Mode and median of a univariate discrete probability distribution
	4. Mathematical Expectation (Univariate Random Variable)	 4.1 Definition of expectation (Mean) of a random variable, expectation of a function of a random variable, m.g.f. and c.g.f. Properties of m.g.f and c.g.f. 4.2 Definitions of variance, standard deviation (s.d.) and Coefficient of variation (c.v.) of univariate probability distribution, effect of change of origin and scale on mean, variance and s.d.
Septmber 2019		 4.3 Definition of raw, central and factorial raw moments of univariate probability Distributions and their interrelations (without proof). 4.4 Coefficients of skewness and kurtosis based on moments.
	5. Some Standard	5.1 Degenerate distribution, mean and variance5.2 Uniform discrete distribution, p.m.f., c.d.f., mean,

	Discrete Probability Distributions - I	variance, real life situations, comments on mode and median 5.3 Bernoulli Distribution: p.m.f., mean, variance
October 2019		5.4 Binomial Distribution: p.m.f., mean, variance 5.5 Hypergeometric Distribution : p.m.f., Computation of probability, situations where this distribution is applicable, binomial approximation to hypergeometric probabilities, mean and variance of the distribution

Paper : Discrete Probability Distributions, Time series and R software

Class: S.Y.B.Sc (Sem-I)

Month	Торіс	Subtopic
July 2019	1. Statndard	1.1 Negative Binomial Distribution:
	Discrete Distributions	Probability mass function (p. m. f.)
		Notation: X ~ NB (k, p).
		Nature of p. m. f., negative binomial distribution as a waiting time distribution, M.G.F., C.G.F., mean, variance, skewness, kurtosis (recurrence relation between moments is not expected). Relation between geometric and negative binomial distribution. Poisson approximation to negative binomial distribution. Real life
August 2019		1.2 Multinomial Distribution: Probability Mass function, Notation use of MGF to obtain means, variances, covariances, total correlation coefficients, multiple and partial correlation coefficients for k= 3, univariate marginal distribution, distribution of $X_i + X_j$, conditional distribution of X_i given $X_i + X_j = r$, variance – covariance matrix, rank of variance – covariance matrix and its interpretation and real life situations and applications.
		1.3 Truncated Distributions:
		Concept of Truncated distribution, truncation to the right, left and on both sides. Binomial distribution B(n, p) left truncated at X=0 (value zero is discarded), its p.m.f., mean, variance .

		Poisson distribution P(m) left truncated at X=0 (value zero is discarded), its p.m.f. , mean, variance. Real life situations and applications.
Sept 2019	3. Fundamentals of R-Software:	3.1 Introduction to R, features of R, starting and ending R session, getting help in R, R commands and case sensitivity.
		3.2 Vectors and vector arithmetic
		creation of vectors using functions c, seq, rep
		Arithmetic operations on vectors using operators +, - , * , / , ^ .
		Numerical functions: log10, log, sort, max, min, unique, range, length, var, prod, sum, summary, fivenum etc.
		accessing vectors
		3.3 Data frames : creation using data.frame, subset and transform commands.
		3.4 Resident data sets : Accession and summary
		3.5 p, q, d, r functions.
	2.Time Series:	2.1 Meaning and utility of time series, Components of time series: trend, seasonal variations, cyclical variations, irregular (error) fluctuations or noise.
		2.2 Exploratory data analysis: Time series plot to (i) check any trend, seasonality in the time series (ii) learn how to capture trend.

	2.3 Methods of trend estimation and smoothing: (i) moving average, (ii) curve fitting by least square principle, (iii) exponential smoothing.
Oct 2019	 2.4 Measurement of seasonal variations : i) simple average method, ii) ratio to moving average method, iii) ratio to trend where trend is calculated by method of least squares. 2.5 Choosing parameters for smoothing and forecasting. 2.6 Forecasting based on exponential smoothing. 2.7 Double exponential smoothing i.e. Holt-Winters method 2.8 Fitting of autoregressive model AR (1), plotting of residuals. 2.9 Data Analysis of Real Life Time Series:

Prof .Thorat S.R.

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.C.S.	Descriptive Statistics-I	Wayal.V.M
2	S.Y.B.Sc	Continuous Probability Distributions-I	Wayal.V.M
	(Sem-I)		
3	F.Y.B.B.A	Business Statistics	Wayal.V.M
	(C.A)		

Paper : Descriptive Statistics-I

Class: F.Y.B.Sc(Computer Science)

Month	Торіс	Subtopic
July 2019		1.1 Meaning of Statistics as a Science.
	1.Data	1.2 Importance of Statistics.
	Condensation	1.3 Scope of Statistics:
	and	1.4 Data Condensation:
	Presentation	Types of data, attributes & variables
	of data	1.5. Graphical representation of statistical data
		Histogram, Ogive curves, Stem and leaf chart
August 2019	2. Descriptive	2.1 Measures of central tendency
	Statistics	2.2 Objectives of Measures of Central Tendency
		2.3 Arithmetic Mean (A.M.)
		2.4 Trimmed mean
		2.5 Median & mode: Definition, Formula, merits &
		Demerits, graphical method for computation
		2.6 Empirical relation
		2.7 Partition values
		2.8 Box and whisker plot
		2.9 Measures of Dispersion
		Introduction
		2.10 Measures of Dispersion
		2.11 Range and Coefficient of range
		2.12 Quartile deviation
		2.13 Mean deviation and coefficient of mean deviation
		2.14 Mean square deviation
		2.15 Variance, standard deviation, coefficient of

		variation	
Sept 2019	3. Moments,	Moments:	
_	Skewness and	3.1 Raw moments (m'r) for ungrouped and grouped data	
	Kurtosis	3.2 Central moments (mr) for ungrouped and grouped	
		data	
		3.3 Relations between central moments and raw	
		moments, upto 4-th order	
		3.4 Concept of skewness of frequency distribution,	
		positive skewness, negative skewness, symmetric	
		frequency distribution.	
		3.5 Bowley's coefficient of skewness	
		3.6 Karl Pearson's coefficient of skewness.	
		3.7 Measures of skewness based on moments (β 1, γ 1).	
		3.8 Concepts of kurtosis, leptokurtic, mesokurtic and	
		platykurtic frequency	
		distributions.	
		3.9 Measures of kurtosis based on moments ($\beta 2, \gamma 2$).	
Oct 2019	4. Theory of	4.1 Attributes:	
	Attributes	4.2 Consistency of data upto 2 attributes.	
		4.3 Concepts of independence and association of two	
		attributes.	
		4.4 Yule's coefficient of association (Q), $-1 \le Q \le 1$,	
		interpretation.	

Paper : Continuous Probability Distributions-I

Class: S.Y.B.Sc (Sem-I)

Month	Торіс	Subtopic
July 2019	1.Continuous Univariate Distributions:	1.1 Continuous sample space: Definition, illustrations. Continuous random variable: Definition, probability density function (p.d.f.), cumulative distribution function (c.d.f.), properties of c.d.f. (without proof), probabilities of events related to random variable. 1.2 Expectation of continuous r.v., expectation of function of r.v. E[g(X)], mean, variance, geometric mean, harmonic mean, raw and central moments, skewness, kurtosis. 1.3 Moment generating function(M.G.F.):Definition and properties,cumulant generating function (C. G. F.) : definition, properties. 1.4 Mode, median, quartiles. 1.5 Probability distribution of function of r. v.: Y = g(X) using i) Jacobian of transformation for g(.) monotonic function and one-to-one, on to functions, ii) Distribution function for Y = X ² , Y = X etc., iii) M.G.F. of g(X).
August 2019	2.Continuous Bivariate Distributions:	2.1 Continuous bivariate random vector or variable b(X, Y): Joint p. d. f., joint c. d. f, properties (without proof), probabilities of events related to r.v. (events in terms of regions bounded by regular curves, circles, straight lines). Marginal and conditional distributions. 2.2 Expectation of r.v., expectation of function of r.v. E[g(X, Y)], joint moments, Cov (X,Y), Corr (X, Y), conditional mean, conditional variance, E[E(X Y = y)] = E(X), regression as a conditional expectation. 2.3 Independence of r. v. (X, Y) and its extension to k dimensional r. v. Theorems on expectation: i) $E(X + Y)$ = E(X) + E(Y), (ii) $E(XY) = E(X) E(Y)$, if X and Y are independent, generalization to k variables.

		T
		E(aX + bY + c), $Var(aX + bY + c)$.
		2.4 M.G.F. : $M_{X,Y}(t_1, t_2)$, properties, M.G.F. of marginal distribution of r. v.s., properties $M_{X,Y}(t_1, t_2) = M_X(t_1, 0) M_Y(0, t_2)$, if X and Y are independent r. v.s., $M_{X+Y}(t) = M_{X,Y}(t, t)$, $M_{X+Y}(t) = M_X(t) M_Y(t)$ if X and Y are independent r.v.s. 2.5 Probability distribution of transformation of bivariate $U = f_1(X,Y)$, $V = f_2(X,Y)$.
Septmber 2019	3.Standard Univariate Continuous Distributions:	3.1 Uniform or Rectangular Distribution: Probability density function (p.d.f.) Notation : $X \sim U[a, b]$. p. d. f., sketch of p. d. f., c. d. f., mean, variance, symmetry. Distribution of i) $X - a$, ii) $b - X$, iii) $Y = F(X)$, where $F(X)$ is the c. d. f. of continuous r. v. X. Application of the result to model sampling. (Distributions of $X + Y$, $X - Y$, XY and X/Y are not expected.)
		3.2 Normal Distribution:
		p. d. f. curve, identification of scale and location parameters, nature of probability curve, mean, variance, M.G.F., C.G.F., central moments, cumulants, b_1 , b_2 , g_1 , g_2 , median, mode, quartiles, mean deviation, additive property, computations of normal probabilities using normal probability integral tables, probability distribution of : i) $X - m$, ii) aX + b, iii) aX + bY + c, iv) X ² , where X and Y are independent normal variates. Probability distribution of X, the mean of n i. i. d. $N(m, s^2)$ r. v s. Normal

	 probability plot, q-q plot to test normality. Model sampling from Normal distribution using (i) Distribution function method and (ii) Box-Muller transformation as an application of simulation. Statement and proof of central limit theorem (CLT) for i. i. d. r. v. s with finite positive variance.(Proof should be using M.G.F.) Its illustration for Poisson and Binomial distributions. 3.3 Exponential Distribution: Probability density function (p. d. f.) Nature of p. d. f., density curve, interpretation of <i>a</i> as rate and 1 / <i>a</i> as mean, mean, variance, M. G. F., C. G. F., c. d. f., graph of c. d. f., lack of memory property, median, quartiles. Distribution of min(X, Y) with X, Y
Oct	i. i. d. exponential r. v. s. 3.4 Gamma Distribution:
2019	Probability density function (p. d. f.)
	Nature of probability curve, special cases: i) $a = 1$, ii) $l = 1$, M. G. F., C. G. F., moments, cumulants, b_1 , b_2 , g_1 , g_2 , mode, additive property. Distribution of sum of n i. i. d. exponential variables. Relation between distribution function of Poisson and Gamma variates.

Month	Торіс	Subtopic	
July 2019	1.Concept of	1.1 Meaning of Statistics as a Science.	
•	Statistics	1.2 Importance of Statistics.	
		1.3 Scope of Statistics:	
		1.4 Data Condensation:	
		Types of data, attributes & variables	
		1.5. Graphical representation of statistical data	
		Histogram, Ogive curves, Cumulative frequency curve	
A	2 Maanna af	2.1 Magazing of control ton down	
August 2019	2. Measures of	2.1 Measures of central tendency	
	central	2.2 Objectives of Measures of Central Tendency	
	tendency	2.3 Arithmetic Mean (A.M.)	
		2.4 Trimmed mean	
		2.5 Median & mode: Definition, Formula, merits &	
		Demerits, graphical method for computation 2.6 Empirical relation	
		2.7 Partition values	
		2.8 Box and whisker plot	
		2.6 Dox and whisker plot	
Sept 2019	3. Measures of	Measures of Dispersion	
	Dispersion	Introduction	
		3.1Measures of Dispersion	
		3.2 Range and Coefficient of range	
		3.3Quartile deviation	
		3.4 Mean deviation and coefficient of mean deviation	
		3.5 Mean square deviation	
		3.6 Variance, standard deviation, coefficient of variation	
Oct 2019	4. Correlation	4.1 Concept of Correlation	
	and Regression	4.2 Types of correlation	
		4.3 Karl Pearson's coefficient of correlation	
		4.4 Meaning of Regression	
		4.5 Two regression equations	
		4.6 Numerical problems.	

Prof V.M. Wayal

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.C.S.	Mathematical Statistics	Bakare S.M.
2	F.Y.B.Com. (A)	Business Mathematics and Statistics	Bakare S.M.
3	F.Y.B.Com. (B)	Business Mathematics and Statistics	Bakare S.M.

Paper : Mathematical Statistics Class: F.Y.B.Sc(Computer Science)

Month	Торіс	Subtopic	
July 2019	1. Theory of	1.1 Counting Principles, Permutation, and	
	Probability	Combination.	
		1.2 Deterministic and non-determination models.	
		1.3 Random Experiment, Sample Spaces (finite and	
		countably infinite)	
		1.4 Events: types of events, Operations on events.	
		1.5 Probability - classical definition, probability	
		models, axioms of probability, probability of an event.	
		1.6 Theorems of probability (with proof) i) $0 \le P(A) \le$	
		1 ii) $P(A) + P(A') = 1$ iii) $P(A) \le P(B)$ when $A \subseteq B$ iv)	
		$P(A \cup B) = P(A) + P(B) - P(A \cup B)$	
		1.7 Numerical problems related to real life situations	
Aug 2019	2. Conditional	2.1Concepts and definitions of conditional probability,	
	Probability and	multiplication theorem $P(A \cap B) = P(A) \cdot P(B A)$	
	Independence	2.2 Bayes' theorem (without proof)	
		2.3 Concept of Posterior probability, problems on	
		posterior probability.	
		2.4 Definition of sensitivity of a procedure, specificity	
		of a procedure. Application of Bayes' theorem to	
		design a procedure for false positive and false negative.	
		2.5 Concept and definition of independence of two	
		events.	
		2.6 Numerical problems related to real life situations.	
Sept/Oct	3. Random	3.1 Definition of Discrete and continuous random	
2019	Variable	variable (r. v.),	
		3.2 Definition of probability mass function (p.m.f.) of	
		discrete r.v. and Probability density function of	

		continuous r.v	
		3.3 Cumulative distribution function (c.d.f.), its	
		properties.	
		3.4 Definition of expectation and variance of discrete	
		and continuous r.v., theorem on expectation and	
		variance (statement only).	
		3.4 Determination of median and mode using p.m.f.	
		only.	
		3.5 Numerical problems related to real life situations.	
Nov / dec	4. Standard	4.1Discrete Uniform Distribution: definition, mean,	
2019	Discrete	variance.	
	Distributions	4.2 Binomial Distribution: definition, mean, variance,	
		additive property, Bernoulli distribution	
		as a particular case with $n = 1$.	
		4.3 Geometric Distribution (p.m.f $p(x) = pqx$, $x =$	
		0,1,2): definition, mean, variance.	
		4.4 Poisson Distribution: definition, mean, variance,	
		mode, additive property, limiting case of	
		B(n, p)	
		4.5 Illustration of real life situations.	
		4.6 Numerical problems related to real life situations	

Subject Teacher

Paper - Business Mathematics and	1 Statistics
----------------------------------	--------------

Class:F.Y.B.Com (A)

Sr.	Month	Торіс	Total
No.		_	Hours
			Required
1	July 2019	3. Population and Sample Definition of Statistics, Scope of Statistics in Economics, Management Science and Industry. Concept of population and sample, methods of data collection: Census and sampling with illustration. Methods of random sampling – SRSWR, SRSWOR, Stratified, Systematic	8
2	July 2019	4. Measure of Central tendency and Dispersion Frequency distribution: Raw data, attributes and variables, Classification of data, frequency distribution, cumulative frequency distribution, Histogram and ogive curves.	5
3	August 2019	Frequency distribution: Raw data, attributes and variables, Classification of data, frequency distribution,cumulative frequency distribution, Histogram and ogivecurves. Requisites of ideal measures of central tendency, Arithmetic Mean, Median and Mode for ungrouped andgrouped data. Combined mean, Merits and demerits of measures of central tendency, Geometric mean:definition, merits and demerits, Harmonic mean:sdefinition, merits and demerits, Choice of A.M., G.M. and H.M.	8
4	August 2019	Concept of dispersion, Measures of dispersion: Range, Variance, Standard deviation (SD) for grouped and	5

5	September 2019	ungrouped data, combined SD, Measures of relative dispersion: Coefficient of range, coefficient of variation. Examples and problems. 1.Interest and Annuity Concept of Present value and Future value, Simple interest, Compound interest, Nominal and Effective rate of interest, Examples and Problems Ordinary Annuity, Sinking Fund, Annuity due, Present Value and Future Value of Annuity, Equated Monthly Installments (EMI) by Interest of Reducing Balance and Flat Interest methods, Examples and Problems.	18
6	October 2019	2.Shares and Mutual Funds Concept of share, face value, market value, dividend, brokerage, equity shares, preferential shares, bonus shares. Examples and Problems Concept of Mutual Funds, Problems on calculation of Net Income after considering entry load, Dividend, Change in Net Asset Value (NAV) and exit load. Averaging of price under the Systematic Investment Plan (S.I.P.). Examples and Problems	8

Paper - Business Mathematics and Statistics

Class:F.Y.B.Com (A)

Sr.	Month	Торіс	Total
No.			Hours
			Required
1	July 2019	3. Population and Sample	8
		Definition of Statistics, Scope of Statistics in	
		Economics, Management Science and Industry.	
		Concept	
		of population and sample, methods of data collection:	
		Census and sampling with illustration. Methods of	
		random sampling – SRSWR, SRSWOR, Stratified,	

		Systematic	
2	July 2019	4. Measure of Central tendency and	5
	, v	Dispersion	
		Frequency distribution: Raw data, attributes and	
		variables, Classification of data, frequency	
		distribution,	
		cumulative frequency distribution, Histogram and	
		ogive	
		curves.	
3	August	Frequency distribution: Raw data, attributes and	8
	2019	variables, Classification of data, frequency	
		distribution, cumulative frequency distribution, Histogram and ogivecurves.	
		Requisites of ideal measures of central tendency,	
		Arithmetic Mean, Median and Mode for ungrouped	
		andgrouped data. Combined mean, Merits and	
		demerits of measures of central tendency, Geometric	
		mean:definition, merits and demerits, Harmonic	
		mean:sdefinition, merits and demerits, Choice of	
		A.M., G.M.	
		and H.M.	
4	August	Concept of dispersion, Measures of dispersion:	5
		Range, Variance, Standard deviation (SD) for grouped and	
		ungrouped data, combined SD, Measures of relative	
		dispersion: Coefficient of range, coefficient of	
		variation.	
		Examples and problems.	
5	September	1.Interest and Annuity	18
-		Concept of Present value and Future value,	_
		Simple interest, Compound interest, Nominal and	
		Effective rate of interest, Examples and Problems	
		Ordinary Annuity, Sinking Fund, Annuity	
		due, Present Value and Future Value of Annuity,	
		Equated Monthly Installments (EMI) by Interest of	
		Reducing Balance and Flat Interest methods, Examples	
		and Problems.	
6	October	2.Shares and Mutual Funds	8
v		Concept of share, face value, market value,	0
		dividend, brokerage, equity shares, preferential	
		shares,	
		bonus shares. Examples and Problems	
		Concept of Mutual Funds, Problems on	
		calculation of Net Income after considering entry	

load,	
Dividend, Change in Net Asset Value (NAV) and	
exit	
load. Averaging of price under the Systematic	
Investment Plan (S.I.P.). Examples and Problems	

Bakare S.M

K. T. S. P. Mandal's Hutatma Rajguru Mahavidyalaya , Rajgurunagar Department Of Statistics Syllabus Completion Report Academic Year 2019-20 Semester-II

Sr.No	Class	Paper	Name of Teacher
1	F.Y.B.Sc	Descriptive Statistics II	Thorat S.R.
2	F.Y.B.Sc	Discrete Probability Distributions	Thorat S.R.
3	S.Y.B.Sc	Statistical Methods and use of R	Thorat S.R.
		Software	

Paper : Descriptive Statistics II.

Class: F.Y.B.Sc

Month	Торіс	Subtopic
Nov /Dec 2019	1. Correlation	 1.1 Bivariate data, Scatter diagram and interpretation. 1.2 Concept of correlation between two variables 1.3 Covariance between two variables (m11): 1.4 Karl Pearson's coefficient of correlation (r) 1.5 Spearman's rank correlation coefficient: compute Karl Pearson's correlation coefficient between ranks.
Dec 2019	2. Fitting of Curve (Regression Line)	 2.1 Concept of dependent and independent variables. 2.2 Identification of response and predictor variables and relation between them. 2.3 Simple linear regression model: Y= a + b X + ε 2.4 Concept of residual, plot of residual, coefficient of determination

Jan 2020	3. Curve fitting	 3.1 Necessity and importance of drawing second degree curve. 3.2 Fitting of second degree curve 3.3 Fitting of exponential Curve of the type Y=ab^x and Y=aX^b
Jan/ Feb 2020	4. Index Number	 4.1 Introduction. 4.2 Definition and Meaning. 4.3 Problems/considerations in the construction of index numbers. 4.4 Simple and weighted price index 4.5 Simple and weighted price index 4.6 Laspeyre's, Paasche's and Fisher's Index numbers. 4.7 Consumer price index number (i) family budget method (ii) aggregate expenditure method. 4.3 Shifting of base, splicing, deflating, purchasing power. 4.4 Description of the BSE sensitivity and similar index numbers.

Paper : Discrete probability Distributions

Class:F.Y.B.Sc

Month	Торіс	Subtopic
Nov/Dec 2019	1. Some Standard Discrete Probability Distributions	 1.1 Poisson distribution: m.g.f. and c.g.f. Moments, mean, variance, skewness and kurtosis, Additive Property for Poisson distribution Conditional distribution of X given (X+Y) for Poisson distribution. 1.2 Geometric distribution: Mean, variance, m.g.f. and c.g.f. Lack of memory Property.
Dec 2019 / Jan 2020	2. Bivariate Discrete Probability Distribution	 2.1 Definition of two-dimensional discrete random variable, its joint p.m.f. and its distribution function and their properties 2.2 Concept of identically distributed random variables. 2.3 Computation of probabilities of events in bivariate probability distribution. 2.4 Concepts of marginal and conditional probability distributions. 2.5 Independence of two discrete random variables based on joint and marginal p.m.f.s
Jan/ Feb 2020	3.Mathematical Expectation (Bivariate Random Variable)	 3.1 Definition of raw and central moments, m.g.f, c.g.f. 3.2 Theorems on expectations 3.3 Conditional expectation. 3.4 Definitions of conditional mean and conditional variance. 3.5 Definition of covariance, coefficient of correlation, independence and uncorrelatedness of two variables. 3.6 Variance of linear combination of variables Var(aX + bY).Correlation coefficient

Month	Торіс	Subtopic
Dec 2019/ Jan 2020	I) Multiple Linear Regression Model:	Definition of multiple correlation coefficient $R_{Y,XX}$. Derivation of the expression for the multiple correlation coefficient. Properties of multiple correlation coefficient 12 Interpretation of coefficient of multiple determination Definition of partial correlation coefficient Fitting of regression plane of Y on X ₁ and X ₂ ,by the method of least squares; obtaining normal equations, solutions of normal equations Residuals : Definition, order, derivation of variance, properties. Definition and interpretation of partial regression coefficients Properties of partial correlation coefficient:
Jan 2020	II) Tests of Hypothesis	Statistics and parameters, statistical inference : problem of estimation and testing of hypothesis. Estimator and estimate. Unbiased estimator (definition and illustrations only). Statistical hypothesis, null and alternative hypothesis, Simple and composite hypothesis, one sided and two sided alternative hypothesis, critical region, type I error, type II error, power of the test, level of significance, p-value. Two sided confidence interval, finding probabilities of type I error and type II error when critical regions are specified . i) Test for population mean equal to specified value ii) Test of equality of two population mean iii) Test for population proportion equal to specified value. iv) Test for equality of two population proportions.
Jan / Feb 2020	III) Tests of Hypothesis using R- Software	Drawing a sample from population using SRSWR, SRSWOR. Tests: Z test, t test, F test and tests for proportions.

	V) Queuing Model	 M/M/1: FIFO as an application of exponential distribution, Poisson distribution and geometric distribution : Inter arrival rate , service rate (μ), traffic intensity ,queue discipline probability distribution of number of customers in queue, average queue length, average waiting time in: i) queue, ii) system.
Feb / March 2020	IV) Dempgraphy	Vital events, vital statistics, methods of obtaining vital statistics, rates of vital events, sex ratios, dependency ratio. Death/Mortality rates: Crude death rate, specific (age, sex etc.) death rate, standardized death rate (direct and indirect), infant mortality rate. Fertility/Birth rate: Crude birth rate, general fertility rate, specific (age, sex etc.) fertility rates, total fertility rate. Growth/Reproduction rates : Gross reproduction rate, net reproduction rate. Interpretations of different rates, uses and applications. Trends in vital rates as revealed in the latest census.

Thorat S.R.

Sr. No	Class	Paper	Name of Teacher
1	F.Y.B.Sc (Computer Science)	Methods of applied Statistics (CSST -121)	Wayal.V.M
2	S.Y.B.Sc	Continuous Probability Distributions-I	Wayal.V.M

Paper : Methods of applied Statistics Class: F.Y.BSc (Computer Science).

Month	Торіс	Subtopic
Nov/ Dec	1. Correlation	1.1 Bivariate data, scatter diagram
2019	(for bivariate	1.2 correlation
	raw data)	1.3 Karl Pearson's coefficient of correlation, limit of r
		1.4 interpretation of r, coefficient of determination,
		Auto correlation
		1.5 Numerical problems
Dec	2.Regression	2.1 Regression
2019		2.2 linear Regression
		2.3 Fitting of straight line using least square method
		2.4 Properties of Regression coefficients
		2.5 Non linear Regression: second degree curve,
		growth curve
		2.6 Residual plot, mean residual sum of squares
		2.7 Numerical problems
Jan/Feb	3. Multiple and	3.1 Yule's notation and concept of multiple regression
2020	partial	3.2 Fitting of multiple Regression plane
	correlation and	3.3 Partial Regression coefficient
	Regression (for	3.4 Multiple correlation coefficient
	trivariate data)	3.5 Partial correlation coefficient
		3.6 Numerical problems
Feb 2020	4. Time Series	4.1 Meaning and utility
		4.2 Component of Time series
		4.3 Additive and Multiplicative models
		4.4 Methods of estimating trend : moving average
		method, least square method and exponential

smoothing method 4.5 Elimination of trend using additive and
multiplicative models4.6 Simple time series models4.7 Numerical problems

Paper : Sampling Distributions and InferenceClass: S.Y.B.Sc (Sem-II)

Month	Торіс	Subtopic
Dec 2019	1.Chi-square	Definition of Chi-squarer. v. as sum of squares of i. i.
	Distribution	d. standard normal variables
	2.Student's t- distribution	Derivation of p. d. f. of with n degrees of freedom (d. f.) using M. G. F., nature of p. d. f. curve, computations of probabilities using tables of distribution. mean, variance, M. G. F., C. G. F., central moments, mode, additive property. χ_n Definition of T r. v. with n d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode, use of tables of t-distribution for calculation of probabilities, statement of normal approximation.
Jan 2020	3.Snedecore's F-distribution: 4. Sampling	 Definition of F r. v. with n₁ and n₂ d. f. Derivation of p. d. f., nature of probability curve, mean, variance, moments, mode. Distribution of 1/F use of tables of F-distribution for calculation of probabilities. Interrelations between Chi-Square, T and F distribution. Random sample from a distribution as i. i. d. r. v.s. Sampling distribution of a statistic. Distribution of sample mean from normal, exponential and gamma distribution.
	Distributions:	distribution, Notion of standard error of a statistic. Independence of \overline{X} and S^2

Feb/March 2020	5.Test of Hypothesis:	Tests based on chi-square distribution: Test for independence of two attributes arranged in 2 X2 contingency table. (With Yates' correction). Test for independence of two attributes arranged in r X s contingency table, McNemar's test Test for 'Goodness of Fit'. (Without rounding-off the expected frequencies). (d) Test for population variance equal to specified value. when i) mean is known , ii) mean is unknown. Tests based on t-distribution: t-tests for population means : i) one sample and two sample tests for one sided and two sided alternatives. Confidence interval. Paired t-test for one-sided and two-sided alternatives.
		when i) means are known, ii) means are unknown.

Wayal.V.M

Sr. No	Class	Paper	Name of Teacher
1	F.Y.B.Sc (Computer Science)	Continuous Probability Distributions and Testing of Hypothesis (CSST -122)	Bakare S.M

Sr. No.	Month	Торіс	Total Hours Required
1	December 2019	UNIT 1:Standard Continuous Probability Distributions 1.1 Uniform Distribution: statement of p.d.f., mean, variance, nature of probability curve. Theorem (without proof): The distribution function of any continuous r.v. if it is invertible follows U(0, 1) distribution 1.2 Exponential Distribution: statement of p.d.f. of the form, $f(x) = (1/\theta) e(-x/\theta)$, mean, variance, nature of probability curve, lack of memory property.(with proof) 1.3 Paratodistribution :Form of pdf $f(x):\alpha/x(\alpha+1)$; x $\geq 1, \alpha > 0$. Mean, variance, symmetry, applications 1.4 Normal Distribution: statement of p.d.f., identification of parameters, nature of probability density curve, standard normal distribution, symmetry, distribution of aX+b, aX+bY+c where X and Y are independent normal variables, computations of probabilities using normal probability table, normal approximation to binomial and Poisson distribution, central limit theorem (statement only), normal probability plot. Box Muller transformation 1.4 Numerical problems related to real life situations	15

2	January	UNIT 2: Concepts and definitions related to	4
	2020	testing of hypothesis	
		2.1 Concepts of population and sample.	
		2.2 Definitions: random samplefrom a probability	
		distribution, parameter, statistic, standard error of	
		estimator.	
		2.3 Concept of null hypothesis and alternative	
		hypothesis (Research hypothesis), critical	
		region, level of significance, type I and type II error,	
		one sided and two sided tests, Test	
		of hypothesis,p-value	
3	January/ feb	UNIT 3:Parametric Tests	16
5	2020		10
	2020	1.1 Large Sample Tests	
		3.1.1Ho: μ = μoVs H1: μ ≠μο, μ <μο, μ >μο (One	
		sided and two sided tests)	
		sided and two sided tests)	
		3.1.2 Ho: $\mu 1 = \mu 2$ Vs H1: $\mu 1 \neq \mu 2$, $\mu 1 < \mu 2$, $\mu 1 > \mu 2$	
		(One sided and two sidedtests)	
		(One sided and two sidedlests)	
		3.1.3 Ho: $P = Po Vs H1$: $P \neq Po, P < Po, P > Po (One$	
		sided and two sided tests)	
		sided and two sided tests)	
		3.1.4 Ho: P1 = P2 Vs H1: P1≠P2, P1 < P2, P1 > P2	
		(One sided and two sidedtests)	
		(One sided and two sidedlests)	
		3.1.5 Numerical problems related to real life	
		situations.	
		Situations.	
		3.2 Test based on F- distribution	
		3.2.1 F-test for testing significance of equality of two	
		population variances.	
		population variances.	
		3.3 Tests based on t – distribution	
		3.3.1 Ho: $\mu 1 = \mu 2$ Vs H1: $\mu 1 \neq \mu 2$, $\mu 1 < \mu 2$, $\mu 1 > \mu 2$	
		(One sided and two sided tests)	
		3.3.2 Paired t-test.	
		3.4 Tests based on Chi square distribution	
		3.4.1 Chi-square test for goodness of fit	
		3.4.2 Test for independence of attributes	
		(mxn and 2x2)	

		3.5 Numerical problems related to real life situations.	
4	Feb 2020	UNIT 4 :Simulation 4.1 Introduction, concept of simulation , random numbers, pseudo random numbers ,	6
		Advantages, Disadvantages of Simulation. Applications 4.2 Methods of simulation, Linear congruential generator and simulation from Uniform,	
		Exponential and Normal Distribution.	

Bakare S.M