Syllabus completion Report

T.Y.B.Sc. Physics (Sem VI) PHY-361: Solid State Physics Year: 2022-2023 Teacher: A.B.Kanawade

Chapter	Month	Contents	Remarks
No.			
1	15/02/2023	1: The Crystalline Structures (10 L)	
	to	Lattice, Basis, Translational Vectors, Primitive Unit Cell,	
	14/03/2023	Symmetry Operations,	
		Different types of lattices: 2D and 3D (Bravais lattices)	
		Miller indices, Inter Planer Distances,	
		SC, BCC and FCC structures,	
		Packing Fraction,	
		Crystal structures NaCl, diamond,	
		CsCl, ZnS, HCP,	
		Concept of Reciprocal Lattice and its properties,	
		Problems	
2	15/03/2023	2: X ray Diffraction and Experimental Methods (9 L)	
	to	Bragg's Diffraction,	
	27/03 2023	Bragg's Law,	
		Experimental X-ray diffraction Methods: The Laue Method,	
		Bragg's Spectrometer,	
		The Powder Crystal Method,	
		Analysis of cubic structure by Powder Method,	
		Ewald's Construction,	
		Bragg's Diffraction condition in direct and reciprocal lattice,	
		Problems	
3	01/05/2023	3: Free Electron and Band Theory of Metals (9L)	
	to	Assumptions of Classical and Somerfield Free Electron model,	
	14/05/2023	Energy levels and Density of States (One and Three	
		Dimensions),	
		Nearly free electron model, Fermi energy, Fermi level,	
		Hall Effect, Mobility, Hall Angle	
		Band Theory of Solids: Origin of energy gap, Energy bands in	
		Solids,	
		Distinction between metal, semiconductor and insulator,	
		Problems	
4	14/05/2023	4: Magnetism (8L)	
	to	Diamagnetism, Langevin theory of Diamagnetism,	
	19/05/2023	Paramagnetism, Langevin theory of Paramagnetism,	
		Ferromagnetism, Antiferromagnetism,	
		Ferromagnetic Domains,	
		Hysteresis, Curie temperature,	
		Neel temperature,	
		Superconductivity,	
		Problems	

The syllabus of the course has been completed as per the schedule.

Syllabus completion Report

T.Y.B.Sc. Physics (Sem VI) PHY-362: Ouantum Mechanics Year: 2022-2023 Teacher: A.B.Kanawade

Chapter	Month	Contents	Remarks
No.			
1	28/03/2023	Origin of Quantum Mechanics: (08 L)	
	to	1. Historical Background: Review of Black body radiation, photoelectric	
	10/04/2023	effect	
		2. Matter waves - De Broglie hypothesis.	
		Davisson and Germer experiment.	
		3. Wave particle duality	
		4. Concept of wave function, wave packet, phase velocity, group velocity	
		and relation between them	
		5. Heisenberg's uncertainty principle with Electron diffraction experiment,	
		different forms of uncertainty.	
		Problems	
2	10/04/2023	The Schrodinger equation: (10 L)	
	to	1. Physical interpretation of Wave function	
	23/04/2023	2. Schrodinger time dependent equation.	
		3. Schrodinger time independent equation (Steady state equation).	
		4. Requirements of wave function.	
		5. Probability current density, equation of continuity and its physical	
		significance.	
		6. An operator in Quantum mechanics Eigen function and Eigen values.	
		7. Expectation value – Ehrenfest's theorem(omly statements),	
		Problems	
3	24/04/2023	Applications of Schrodinger Steady state equation: (14 L)	
	to	1. Free particle.	
	10/05/2023	2. Step Potential	
		3. Potential barrier(Qualitative discussion),	
		4. Barrier potential and tunneling effect.	
		5. Particle in infinitely deep potential well (one - dimension).	
		6. Schroedinger equation in spherical polar coordinate system	
		7. Rigid rotator (Free axis)	
		8. Problems	
5	16/05/2023	Operators in Quantum Mechanics: (04 L)	
	to	1. Hermitian operator.	
	18/05/2023	2. Position, Momentum operator, angular momentum operator, and total	
		energy operator (Hamiltonian).	
		3. Commutator brackets- Simultaneous Eigen functions.	
		4. Commutator algebra.	
		5. Commutator brackets using position, momentum and angular momentum	
		operator.	
		6. Concept of parity according to quantum mechanics, parity operator and its	
		Eigen values.	
		7. Applications of operators in quantum mechanics	
		8. Problems	

The syllabus of the course has been completed as per the schedule.

Syllabus completion Report

S.Y.B.Sc. Physics (Sem IV) PHV-242: Ontics Year: 2022-2023 Teacher: A.B.Kanawade

1 11 1	-242. Optics	Teacher: 11.D.iXan	awauc
Chapter No.	Month	Contents	Remarks
1	11/03/2023	1. Geometrical optics: (08L)	
-	to	1.1 Introduction to lenses and sign conventions.	
	29/03/2023	1.2 Thin lenses: Lens equation for convex lens	
	29/03/2028	1 3 Lens maker equation	
		1.4 Concept of magnification deviation and power of a thin lens	
		1.5 Equivalent focal length of two thin lenses	
		1.6 Concept of cardinal points	
		1.7 Problems	
2	31/03/2023	2 Long Abarrations: (081)	
2	to	2.1 Introduction	
	28/04/2023	2.1 Introduction	
	20/04/2023	2.2 Types of Monochrometic Abarrations and their Paductions	
		2.5 Types of Monochromatic Aberrations and their Reductions	
		2.4 Types of Chromatic Aberrations	
		2.5 Achiomatism. Lenses in Contact and Separated by a finite Distance	
		2 6 Problems	
2	06/05/2022	2.0 Problems	
3	00/03/2023	3. Optical Instruments: (00L)	
	10/05/2022	2.2 Simple Missesses	
	10/03/2023	3.2 Simple Microscope	
		2.4 Demoden ² e sus nices	
		3.4 Kamsden's eye piece	
		3.5 Huygens eye piece	
	11/05/2022	5.0 Problems.	
4	11/05/2025	4. Interference and Diffraction: (08L)	
	10	4.1 Introduction	
	16/05/2023	4.2 Phase change on reflection (Stokes treatment)	
		4.3 Interference due to wedge snaped thin film	
		4.4 Newton's ring	
		4.5 Diffraction Types:Freshel's Diffraction and Fraunnoffer's	
		Diffraction	
		4.6 Fraunhoffer's diffraction at a single slit	
		4.7 Plane Diffraction grating, Rayleign criterion for resolution	
	1 6/05/0000	4.8 Problems	
5	16/05/2023	4. Polarization: (6L)	
	to	5.1 Introduction to polarization	
	19/05/2023	5.2 Brewster's law	
		5.3 Law of Malus	
		5.4 Polarization by double refraction	
		5.5 Nicol Prism	
		5.6 Problems	

The syllabus of the course has been completed as per the schedule.