K.T.S.P. Mandal's Hutatma Rajguru Mahavidyalaya, Rajgurunagar Department of Mathematics Programme Specific Outcome and Course outcome

Programme Specific Outcome:

- PSO 1: Give the students a sufficient knowledge of fundamental principles, methods and a clear perception of innumerous power of mathematical ideas and tools and know how to use them by modeling, solving and interpreting.
- PSO 2: To equip the students sufficiently in both analytical and computational skills in Mathematical Sciences.
- PSO 3: To develop a competitive attitude for building a strong academic industrial collaboration, with focus on continuous learning skills.
- PSO 4: Enhancing students overall development and to equip them with mathematical modeling abilities, problem solving skills, creative talent and power of communication necessary for various kinds of employment.
- PSO 5: Enabling students to develop a positive attitude towards mathematics as an interesting and valuable subject of study.
- PSO 6: Enabling students to Gauge the hypothesis, theories, techniques and proofs provisionally.

Course	course outcome.			
Class	Sem	Paper	Subject	Course Outcome
F. Y. B. Sc.	Ι	Maths-I	Algebra	By the end of this course students will able
		MT-111		to
				CO1 : Using Euclidean Algorithm find the
				GCD , also example based on
				mathematical inductions.
				CO2:Find inverse of function, also
				examples based on equivalence relation.
				CO3: find the congruence relation
				CO4 : Perform the basic operation on
				complex number, also find the conjugate,
				modulus and argument of complex
				number. also find the n th root of the unity.

Course Outcome:

	-	1	1	
				CO5 : Know the definition functions ,one-
				one function, onto function, inverse
				function
				CO6 : use of Fermat's theorem to find the
				remainder
F. Y. B. Sc.	Ι	Maths-II	Calculus	CO1 : Know properties of real numbers.
		MT-112	Ι	Also know the Absolute value.
				CO2 : Know the definition of sequence,
				the limit of sequence, limit theorems
				CO3 :Know the concept of convergent
				sequence, Divergent sequence, Monotone
				sequence, Oscillatory sequence,
				Subsequence, Bolzano-Weierstrass
				theorem, Divergence Criteria.
				CO4 : Know the definition of function,
				Find the domain and range of function and
				their graphs.
				CO5 : Types of functions with graphs
				CO6: Definition of limit of function,
				Cluster point, examples based on
				ϵ - δ definition of limit.
				CO7 : Sequential criteria for limits
				,Divergence criteria.
				CO8 : Know the left hand limit and right
				hand limit, infinite limits.
				CO9 : Know the definition of continuous
				function , sequential criterion for
				continuity, Discontinuity criterion
				CO10: know the concept of Combination
				of continuous functions, also composition
				of continuous functions, continuous
				functions on intervals
				CO11: Know the examples of continuous
				functions, Bolzano's Intermediate value
				theorem.
F. Y. B. Sc.	I	Maths-III	Practical	CO1:Know the Operators with
		WII-115		Description, Also Assign the numbers by
				using maxima
				CO2 : Assign the sets ,also find the set
				operation such as union, intersection,

difference, complement ,cardinality of
sets, power sets ,equal sets, subsets
, partitions of sets , Cartesian product by
using maxima software.
CO3: Find the GCD and LCM , divisors of
integers ,find the remainder by using
maxima: Find the square root of integers
,also find the angle of trigonometric
functions by using maxima software.
CO4: Find the addition, subtraction
,multiplication ,conjugate, real and
imaginary part, modulus, argument of
complex number by using maxima.
CO5: Computing limit of function ,also
graphically show that the function is
continuous or not by using maxima, also
find the terms of the sequence and discuss
the convergence of the sequence by using
maxima software.
CO6:Using Euclidean Algorithm find the
GCD , also example based on
mathematical inductions.
CO7:Find inverse of function, also
examples based on equivalence relation.
CO8: Perform the basic operation on
complex number, also find the conjugate,
modulus and argument of complex
number. also find the n th root of the unity.
CO9:Discuss the continuity of the
function, also prove that a function is
continuous at a point by using sequential
criterion.
CO10:Example based on ϵ - δ definition,
Evaluating the limit of function.
CO11: Find the supremum and infimum of
the set,
CO12: Using the limit of sequence to
show that sequence has limit, or discuss
the convergence of sequence also find the

				limit of the sequence.
				mine of the sequence.
F. Y. B. Sc.	Π	Maths-I MT-121	Analytica l Geometr y	 CO1 : Change of axes-Translation of axes and Rotation of Axes. Also know that equation for translation and equation for rotation. CO2 : Know that General equation of second degree in two variables. CO3 : Know that the types of conic section such as An Ellipse, An Hyperbola ,An Parabola. Also must know the standard equation of Ellipse, Parabola, Hyperbola. CO4 : Determine the Nature of Conics. CO5 : Translate and rotate the axes and reduce the conic to standard form. CO6: Find the Direction Ratios and Direction cosines, Also know the Relation between d. r. s. and d. c. s. CO7 : Find the equation of plane , Normal form, transform to the normal form, plane passing through three non-collinear points ,intercept form, angle between two planes. CO9 : Find equation of line in symmetrical and unsymmetrical forms, line passing through two points, angle between a line and a plane. CO10:Know the Perpendicular distance of a point from a plane and a plane. CO10:Know the Perpendicular distance of a point from a plane form, a plane, condition of coplanarity. CO11: Know the equation of sphere in different form, plane section of sphere in different form, plane section of a sphere and line, equation of tangent plane to

				sphere.
F. Y. B. Sc.	II	Maths-II MT-122	Calculus II	CO1 :Know the definition of the derivative of a function at a point, every differential function is continuous, rules of differentiation, the chain rule, Derivative of inverse function. CO2 : The Mean value theorems and Roll's theorem, Cauchy mean value theorem. CO3 : Know the L Hospital Rule , Taylor theorem , Maclaurin's theorem with Lagrange's form of remainder. CO4 : Know that the successive differentiation, Also know the n th derivative and Leibnitz theorem for successive differentiation CO5 : Ordinary Differential Equations CO6: Know the Linear first order equations , separable equations CO7: Existence and Uniqueness of solution of nonlinear equations. CO8 :Know the definition of Exact differential equations,. CO9 : Find the transformation of nonlinear equations to separable equations. CO10: Find the Integrating factor
F. Y. B. Sc.	Π	Maths-III MT-123	Practical	CO1:Determine the nature of the conics by using maxima .also assign the co-ordinates CO2: Draw the plane ,use maxima to find equation of plane passing through three points, also using maxima to show any four points are coplanar. CO3:use maxima to find in symmetrical form of equation of line also find the equation of sphere passing through the points by using maxima, also show that the points are concyclic. CO4:Find the derivative of a function by using maxima also find the derivative by

F. Y. B. Sc. (Comp. Sci.) F. Y. B. Sc.	Ι	Maths I MT-111	Matrix Algebra	chain rule in maxima, also verify the Mean value theorem and Roll's theorem by using maxima, also find Taylor series expansion in maxima CO5:Find the integrating factor using maxima for differential equation to be exact, also determine the given differential function are exact by using maxima, plot the direction field using maxima software. CO7:Example based on Translate and rotate the axes and reduce the conic to standard form. CO8:Examples based on coplanarity, also find the equation of plane passing through the three points. CO9:Obtain the symmetrical form of the equation of line, example based on equation of sphere having the circle as great circle. CO10:Calculating the derivative of the functions, also verify the Mean value ,thm,Roll's value ,Cauchy thm. CO1 : perform matrix operations CO2 : find the inverse of a matrix CO3 : Obtain row reduction and echelon forms, vector equations CO4 : obtain solution set of linear system CO5 : find partitioned matrices, LU decomposition CO6 : find linear independent vector, the matrix of linear transformation CO7 :find dimension and rank CO8: find the solutions of linear equations by sing cramer's rule , volume and linear transformations
(Comp.	-	MTC-	Mathema	Logical Connectives, Propositional
Sci.)		112	tics	Equivalence.

			1	
				 CO2 : Predicate, <i>n</i>-Place and <i>n</i>-ary . CO3 : Identify Universal Quantifier, Existential Quantifier. CO4 : Know the Rules of Inference. CO5 : Types of Relations, Representation of Relations CO6 : Draw Hasse diagram. CO7 : Distinguish between Complemented lattice, Bounded lattice and Distributive lattice. CO8: Transitive Closure and Warshall's Algorithm
				 CO9: Understand Boolean function, Represent Boolean function. CO10 : Understand the Inclusion- Exclusion Principle and Pigeonhole Principle. CO11 : Use Permutation and combination. CO12 : Use Recurrence Relations to find homogeneous solution, Solving Recurrence Relation, particular and total solution.
F. Y. B. Sc. (Comp. Sci.)	Ι	Maths III MTC- 113	Practical	 CO1 : Show equivalence by using maxima software CO2 : Find adjacency and incidency matrix by using maxima software . CO3 : Find Conjunctive Normal Form and Disjunctive Normal Form by using maxima software . CO4 : Simplify the boolean expressions by using maxima. CO5: By using maxima software determine permutation and combination. CO5 : Solve the recurrence relation by using maxima software. CO6: Know the operation on matrices by using maxima software . CO7 : Find Column space ,Null space ,Rank and Nullity of matrix by using

				maxima software . C08 : Know the Propositional equivalence ,predicates and quantifiers ,Rules of inference CO9 : Find transitive closure by Warshall's algorithm, know the properties of lattices ,and types of lattices, boolean variable and boolean function CO10 : Know the Inclusion - Exclusion principle , Pigeonhole principle , Permutation and combination
				 contraction is solve nonlogeneous and non- homogeneous recurrence relation contraction contraction invertible matrices , method of solving linear system , Row reduction and Echelon forms contraction and Echelon forms contraction is invertible contraction is invertible contraction is invertible contraction is invertible determinants, Cramer's rule , volume and linear transformation .
F. Y. B. Sc. (Comp. Sci.)	Π	Maths I MTC- 121	Linear Algebra	CO1 : understand vector spaces and subspaces CO 2 : Find Null spaces ,column spaces CO3 : Find Linearly independent sets and basis for vector spaces CO4: Obtain eigenvalues and eigenvectors ,characteristic equation CO5: perform diagonalization of matrices , linear transformations CO6: find inner product , length and orthogonality ,orthogonal sets, Orthogonal projections, Quadratic forms CO7 : Find affine Combinations, Affine independence convex combinations
F. Y. B. Sc. (Comp. Sci.)	II	Maths II MTC- 122	Graph Theory	CO1: Understand basic terminologies and results of Graphs, Graphs models. CO2 : Know the types of Graphs ,Types of

				the Diagraphs, Isomorphism of the Graphs
				CO3 : Calculate Adjacency and Incidence
				Matrix of a Graph.
				CO4 : Find subgraphs, induced subgraphs
				of graph.
				CO5 : Know the Elementary properties of
				the Connectedness.
				CO6 : Perform vertex deletion and edge
				deletion operation on graph. Counting
				paths between vertices.
				CO7 : Find the shortest path by Dijkstra's
				Algorithm.
				CO8 : Understand various properties of
				connected graph, tree and Eulerian and
				Hamiltonian Graphs.
				CO9 : Know the Konigsberg bridge
				problem, Fluery's Algorithm
				CO10 : Find the shortest path by travelling
				salesman problem, Chinese Postman
				Problem .
				CO11: Understand the concept of union,
				intersection, product and complement of
				graph.
				CO12 : Understand basic terminologies,
				Properties and applications of trees
				CO13 : Find the shortest path using
				Kruskal's Algorithm and Prim's Algorithm
F. Y. B. Sc.	II	Maths III	Practical	CO1 : Find the Matrix representation and
(Comp.		MTC-		elementary result, isomorphism of graphs
501.)		125		,application of special types of graphs.
				C02 : Shortest path problems , Dijkstra's
				algorithm
				CO3 : Find Eulerian path , Hamiltonian
				path , Travelling salesman problem
				,Chinese Postman Problem .
				CO4 : Examples based on the linearly
				independence and dependence ,Find basis
				and dimension of null space, Find the
				bases for the subspace spanned by the
				vectors

				CO5 : Find the eigen values and eigen vectors of the matrix, Know the diagonalization process . CO6 : Know the Gram Schmidt process , Orthogonality and symmetric matrices CO7 : Know the Affine combination , Affine independence and convex combination CO8 : Find the number of vertices ,degree of each vertex ,minimum and maximum degree vertex ,minimum and maximum degree vertex by using maxima software CO9 : Identify the types of graphs, Show graph Isomorphism by using maxima software . Determine graphs are connected or not by busing maxima software . CO10 : Find the edge connectivity ,vertex connectivity ,Hamilton path and Hamilton cycle by using Maxima software. CO11 :Find column space and null space ,eigen values and eigen vectors by using maxima software. CO12 :Diagonalize the matrices by using Maxima Software. Compute inner product ,length of the vectors by using maxima software . Determine sets of vectors are orthogonal or orthonormal by using maxima software .
F.Y.B.B.A. (C.A.)	Π	CA-203	Busines s Mathem atics	 CO1 : Solve basic problems based on gcd ,ratio ,proportion etc. CO2 : Solve problems of Profit, Loss , simple interest ,compound interest. CO3 : Know about shares and annuity. CO4 : Know about matrices and algebra of matrices such as addition subtraction, multiplication , scalar multiplication. CO5 : Find the Inverse of the matrix by adjoint method.

				CO6 : Know the Linear programming
				problem , graphical method and
				Formulation of LPP.
				CO7 : Solve the transportation problem,
				North West Corner Method , Least Cost
				Entry Method , Vogel's Approximation
				Method.
S.Y.B.Sc.	Ι	Maths I	Calculus	CO1 : Find the domain and range of
		MT -231	Of Several	multivariable function.
			Variables	CO2 : Find level curve and plot a graph of
			v unuoies	function.
				CO3 : Find simultaneous and repeated
				limits.
				CO4 : Calculate partial derivative of
				higher order.
				CO5 : Know the concept of
				differentiability, apply chain rule .
				CO6 : Apply Lagrange's method for
				finding extreme vales.
				CO7 : Calculate Double and triple integral
				and find area and volume of different
				surfaces
S.Y.B.Sc.	Ι	Maths II	Numeri	CO1 : Rounding off number to n
		$\frac{1}{232(\Delta)}$	cal	significant digits and n decimal places.
		232(11)	Method	CO2 : Calculate absolute, relative and
			s And	percentage error.
			It's	CO3 : Apply Bisection, False position,
			Applica	Newton Raphson and iteration methods
			tions	for finding approximate solution.
				CO4 : Know the finite difference operators
				and their relations.
				CO5 : Apply Newton forward difference,
				Backward difference interpolation,
				Lagrange's interpolation and Newton
				divided difference formulae.
				CO6 : Feet straight line, quadratic
				equation, power function and exponential
				function.
				CO/: Use Trapezoidal rule, Simpson's
				$(1/3)^{ru}$ and Simpson's $(3/8)^{tn}$ rule.

				CO8 : Find numerical solution of
				differential equation by using Euler's
				method modified Euler's method and
				Runge Kutta methods.
S.Y.B.Sc.	II	Maths I	Linear	CO1 : Reduce the matrix to row echelon
		MT-241	Algebra	form and solve the system of linear
				equations.
				CO2 : Know the concept of Vector Space.
				subspace . linear dependence and
				independence.
				CO2 : Check whether given set is basis or
				not of vector space.
				CO3 : Find basis for row space, column
				space, null space.
				CO6 : Check linear transformation of
				function
				CO7 : Calculate rank and nullity of linear
				transformation.
				CO8 : Find inverse of linear
				transformation and matrix of linear
				transformation.
				CO9 : Know the basic matrix
				transformation in \mathbb{R}^2 and \mathbb{R}^3 .
S.Y.B.Sc.	II	Maths II	Vector	CO1 : Calculate limit continuity
		MT-242	Calculus	derivative and integration of vector valued
				function.
				CO2 : Find Arc Length along curve, speed
				on a smooth curve and tangent vector.
				CO3 : Evaluate line integral of vector
				fields.
				CO4 : Find work done, flow integrals,
				circulation for vector field.
				CO5 : Apply Divergence theorem and
				Green's theorem.
				CO6 : Calculate surface integrals of vector
				fields.
				CO7 : Apply Stokes' theorem and find
				Curl and Divergence of vector field.
S.Y.B.Sc.	Ι	Maths I	Group	CO1 : Know the division algorithm,

Sci.) 231 Coding Theory CO2 : Understand Euclid's Lemma . CO3 : Identify Equivalence relation Congruence relation, on set of integers. Equivalence class partition . CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of	(Comp.	MTC-	and	G.C.D using division algorithm and
Theory CO2 : Understand Euclid's Lemma . CO3 : Identify Equivalence relation Congruence relation, on set of integers Equivalence class partition . CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of	Sci.)	231	Coding	expressing it as linear combination.
CO3 : Identify Equivalence relation Congruence relation, on set of integers Equivalence class partition . CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of			Theory	CO2 : Understand Euclid's Lemma.
Congruence relation, on set of integers Equivalence class partition . CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of				CO3 : Identify Equivalence relation .
Equivalence class partition . CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of				Congruence relation, on set of integers.
CO4 : Know the definition of binary operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of				Equivalence class partition.
operation ,group and elementary properties of group. CO5 : Know the definition of subgroup ,examples ($(Z_n, +)$ and $(U(n),)$, order of				CO4 : Know the definition of binary
of group. CO5 : Know the definition of subgroup examples ($(Z_n, +)$ and $(U(n),)$, order of				operation .group and elementary properties
CO5 : Know the definition of subgroup examples ($(Z_n, +)$ and $(U(n),)$, order of				of group.
, examples $((Z_n, +))$ and $(U(n),)$, order of				CO5 : Know the definition of subgroup
				, examples ($(Z_n, +)$ and $(U(n),)$, order of
group, order of an element.				group, order of an element.
CO6 : Find order of group, order of ar				CO6 : Find order of group , order of an
element.				element.
CO7 : Distinguish between Group and				CO7 : Distinguish between Group and
Subgroup.				Subgroup.
CO8: Identify the permutation group				CO8: Identify the permutation group
,cyclic group, finding generators of Z_n .				,cyclic group, finding generators of Z_n .
CO9: Understand definition and examples				CO9: Understand definition and examples
of cosets , Lagrange Theorem.				of cosets, Lagrange Theorem.
S.Y.B.Sc. I Maths II Numerica CO1 : Rounding off number to r	S.Y.B.Sc.	I Maths II	Numerica	CO1 : Rounding off number to n
(Comp. MIC- Sci.) Sci.) Significant digits and n decimal places.	(Comp.	MIC-	l Techniqu	significant digits and n decimal places.
e CO2 : Calculate absolute, relative and	501.)	232	e	CO2 : Calculate absolute, relative and
percentage error.				percentage error.
CO3 : Apply Bisection, False position				CO3 : Apply Bisection, False position,
Newton Raphson and iteration methods				Newton Raphson and iteration methods
for finding approximate solution.				for finding approximate solution.
CO4 : Know the finite difference operators				CO4 : Know the finite difference operators
and their relations.				and their relations.
CO5 : Apply Newton forward difference				CO5 : Apply Newton forward difference,
Backward difference interpolation				Backward difference interpolation,
Lagrange's interpolation and Newtor				Lagrange's interpolation and Newton
divided difference formulae.				divided difference formulae.
CO6: Use Trapezoidal rule, Simpson's				CO6: Use Trapezoidal rule, Simpson's
$(1/3)^{-1}$ and Simpson's $(3/8)^{-1}$ rule.				$(1/5)$ and Simpson's $(5/8)^{-1}$ rule.
differential equation by your Euler's				differential equation by using Euler's
unterential equation by using Eulers				mothed modified Euler's method and
Runge Kutte methods				Runge Kutta methods
S.Y.B.Sc. II Maths I Computat CO1. Understand basic terminologies and	GNDC	II Mothe I	Computat	

(Comp.		MTC-	ional	representation of points, transformation
Sci.)		241	Geometr	and matrices.
			У	CO2 : Know the transformation of points .
				straight lines, mid-point, parallel lines .
				intersecting lines.
				CO3 : Know the transformations :
				rotations, reflections, scaling shearing.
				CO4 : Find transformation of unit square
				solid body transformation .
				CO5 : Find the translations and
				homogeneous co-ordinate.
				CO6 : Perform multiple transformations.
				CO7 : Find the three dimensional - scaling
				,shearing, rotation, reflection ,translation .
				CO8 :Understand the rotation about- an
				axis parallel to co-ordinate axis, an
				arbitrary line .
				CO9 : Know reflection through- co-
				ordinate planes, planes parallel to co-
				ordinate planes, arbitrary plane
				CO10 : Identify the types of projection :
				Orthographic projection ,Axonometric
				projection, Oblique projection, Single-
				point perspective projection.
				CO11: Understand the concept of curve
				presentation and parametric presentation
				CO12 : Understand parametric
				representation of circle and generation of
				circle.
				CO13 :Understand the definition and
				properties of the Bezier curve and equation
				of the curve in matrix form(up to $n=3$).
S.Y.B.Sc.	II	Maths II	Operatio	CO1 : Use graphical method to solve
(Comp.		MTC-	n	LPP.
Sci.)		242	Research	CO2 : Apply simplex method. understand
				the concept of surplus variable slack
				variable and artificial variable.
				CO3 : convert the problem in dual form.
				CO4 : Solve the transportation problem by

	using North west corner method, matr	ix
	minima method, VAM etc.	
	CO5 : Solve assignment problem b	by
	Hungarian method	-

- Maya R. M. Waval

Head Department of Mathematics Hutatma Rajguru Mahavidyalaya,Rajgurunagar

Dr. Shirish S. Pingale Principal Hutatma Rajguru Mahavidyalaya Rajgurunagar,Tal.Khed,Dist.Pune.