K.T.S.P. MANDAL'S

HUTATMA RAJGURU MAHAVIDYALAYA

RAJGURUNAGAR, TAL-KHED, DIST-PUNE 410505

Department of Computer Science

Academic Year 2022-2023

Program Specific Outcome

- PSO 1: Ability to apply knowledge of computing, mathematics, and basic sciences that may Be relevant and appropriate to the domain.
- PSO 2: Ability to analyze a problem, identify and define the computing requirements, which may be appropriate to its solution.
- PSO 3: Ability to design, implements, and evaluate computer-based system, process, component, or program to meet desired needs and to solve computational problem.
- PSO 4: An ability to function effectively on teams to accomplish a common goal.
- PSO 5: Understanding of professional, ethical, legal, security, social issues and responsibilities.
- PSO 6: Demonstrate understanding of the principles and working of the hardware and Software aspects of computer systems.
- PSO 7: Ability to analyze the local and global impact of computing on individuals, organizations, and society.
- PSO8: To enhance skills and adapt new computing technologies for attaining professional Excellence and carrying research.
- PSO 9: Ability to use current techniques, skills, and tools necessary for computing practices.
- PSO 10: Ability to use and apply current technical concepts and practices in the core development of solutions in the form of Information technology.

Course Outcome:

Class	Semester	Paper (Paper no. &	Subject	Course Outcome
		Code)		
F.Y.B.Sc.	I	Computer Science	Problem Solving	CO 1: Draw the flowchart
(Comp. Sci)		Paper-I (CS-111)	Using Computer	and design an algorithm for a
			And C	given problem by using
			Programming-I	operators.

			CO 2: Develop conditional
			and iterative statement to
			write C programs.
			CO 3: Understand user defined function to solved
			real time problems.
			CO 4: C Programs that use
			pointers to access arrays.
			CO 5: String Manipulation
			and functions.
			CO 6: Understand user
			defined data types including
			structures and union to solve problems.
I	Computer Science	Database	CO 1: Understand terms
•	Paper-II (CS-112)	Management	related to database design and
	,	System	management.
			CO 2: Understand the
			objective of the data and
			information management.
			CO 3: Understand the database development
			process.
			CO 4: To understand the
			relational model &relational
			database management system.
			CO 5: Asses data and
			information requirements.
			CO 6: Conceptual data models.
I	Computer Science	Practical based on	CO 1: Apply the specification
	Paper-III (CS-113)	CS-111 and CS-	of syntax rules for numerical
	, , ,	112	constants and variables, data
			types.
			CO 2: To use Arithmetic,
			Conditional, Logical and
			Relational operators and other C construct.
			CO 3: Write a c program
			using decision making,
			branching, looping construct.
			CO 4: Apply and write C
			Program to implement 1-D
			and 2-D arrays.
			CO 5: Write programs using functions.
			CO 6: Apply basic concept of
			database system and
			application.
			CO 7: Use the basic of SQL

			and construct queries using SQL in database creation and interaction.
I	Electronic Science Paper-I (ELC-111)	Semiconductor Devices and Basic Electronic Systems	CO 1: To analyze basic PN junctions in semi-conductor devices under various conditions CO 2: To design and analyze simple rectifiers and voltage regulators using diodes. CO 3: To describe the behavior of special purpose diodes. CO 4: Do design and analyze simple BJT and MOSFET circuits.
I	Electronic Science Paper-II (ELC-112)	Principles of Digital Electronics	CO 1: Convert different type of codes and number systems which are used in digital Communication and computer systems. CO 2: The ability to understand, analyze and design various combinational circuits CO 3: To compare different types of logic families which are the basic unit of different types oflogic gates on the basis of cost, capacity, performance and efficiency. CO 4: Design various logic gates and simplify Boolean equations. CO 5: Illustrate reduction of logical expressions using Boolean algebra and k-map method.
I	Electronic Science Paper-I (ELC-113)	Electronics Practical (Lab-IA)	CO 1: Distinguish between analog and digital systems. CO 2: Identify the various digital ICs and understand their operation CO 3: Apply Boolean laws and K-map to simplify the digital circuits CO 4: Ability to identify basic requirements for a design application and propose a cost effective

1			
			solution. CO 5: The ability to identify and prevent various hazards and timing problems in a digital design. CO 6: To develop skill to build, and troubleshoot digital circuits. CO 7: Acquire a basic knowledge in solid state electronics including diodes, MOSFET, BJT, and Operational amplifier.
I	Mathematics Paper-I- (MTC-111)	Matrix algebra	CO1: perform matrix operations CO 2: find the inverse of a matrix CO 3: Obtain row reduction and echelon forms, vector equations CO 4: obtain solution set of linear system CO 5: find partitioned matrices, LU decomposition
I	Mathematics Paper-II - (MTC-112)	Discrete Mathematics	CO1: Know the Propositional Logic, Logical Connectives, proportional Equivalence. CO 2: Identify Universal Quantifier, Existential Quantifier. CO 3: Know the Rules of Inference. CO 4: Types of Relations, Representation of Relations CO 5: Draw Hasse diagram.
I	Mathematics Paper-III - (MTC-113)	Mathematics Practical	CO 1: Show equivalence by using maxima software CO 2: Find adjacency and incidency matrix by using maxima software. CO 3: Find Conjunctive Normal Form and Disjunctive Normal Form by using maxima software. CO 4: Simplify the boolean expressions by using maxima. CO5: By using maxima software determines permutation and combination.
I	Statistics Paper I-	Descriptive	CO 1: Acquire basic concepts

		(CCCT 111)	Chatiatian	of Chatistics
		(CSST- 111)	Statistics	of Statistics CO 2: Compute various measures of central tendency CO 3: Identify the nature of data using moments, skewness and kurtosis measure CO 4: Analyze data pertaining to attributes and interpret the results.
	I	Statistics Paper II- (CSST- 112)	Mathematical Statistics	CO 1: Understand basic concepts of probability CO 2: Understand concept of conditional probability CO 3: Compute probabilities of various events CO4: Understand applications of standard discrete distributions
	I	Statistics Paper III- (CSST- 113)	Statistics Practical	CO 1: Tabulate and make frequency distribution of the given data. CO 2: Use various graphical and diagrammatic techniques and interpret. CO 3: Compute various measures of central tendency, dispersion, Skewness and kurtosis. CO 4: Fitting of Binomial and Poisson distributions.
F.Y.B.Sc. (Comp. Sci)	II	Computer Science Paper-I (CS-121)	Advanced C	CO 1: Develop modular programs using control structures, pointers, strings and structures CO 2: Design and develop solutions to real world problems using advanced C. CO 3: Understand user defined data types including structures and union to solve problems. CO 4: Implement C Programs using pointers and to allocate memory using dynamic memory using dynamic memory management functions. CO 5: Exercise files concepts to show input and output of files in C.

тт	Computer Science	Polotional	CO1 Design E D model for
II	Computer Science Paper-II (CS-122)	Relational Database Management System	CO1- Design E-R model for given requirements and convert the same into database tables. CO2- Use database techniques such as SQL and PL/SQL. CO3- Explain transaction management in relational database system. CO4-Use advanced database
II	Computer Science Paper-III (CS-123)	Practical based on CS-121 and CS- 122	programming concepts. CO 1: Develop program using strings. CO 2: Enabling effective usage of pointers and structures. CO 3: Develop a program using enumerated data type, functions, union and nested structures. CO 4: Implementing the files and command line arguments. CO 5: Designing the basic concept of database. CO 6: Implementing data integrity constraints in database. CO 7: Validating the various fundamental tasks to perform
II	Electronic Science Paper-I (ELC-121)	Instrumentation Systems	data modeling. CO 1: Working principle of resistive, inductive and capacitive transducers and their applications. CO 2: Understanding of thermo-couples piezoelectric and pyro-electric transducers and their applications. CO 3: Understanding of optical sensors and other sensors. CO 4: Understand Various physical parameters of sensors using industry and normal measurement applications. CO 5: Understand and analyze the IC741 operational amplifier and its

			characteristics.
			CO 6: Design the solution for
			linear and non-linear
		2.0	applications using IC741.
II	Electronic Science	Basics of Computer	CO 1: Understand the theory
	Paper-II (ELC-122)	Organization	and architecture with
			functionality of central processing unit.
			CO 2: Analyze sum of the
			design issues in terms of
			speed, technology, cost and
			performance.
			CO 3: Analyze the
			performance of various
			classes of memories, build
			large memories using small
			memories for better
			performance.
			CO 4: Implement and verify the truth tables of various
			flip-flops.
			CO 5: Design and implement
			the counters
			CO 6: Design and implement
			the sequential circuits such as
			registers and sequence
			generators.
			CO 7: Design and analyze
			Synchronous and Asynchronous sequential
			circuits using flip-flop.
			CO8: Identify the basic
			forms of data movement in
			shift registers.
II	Electronic Science	Electronics	CO 1: Design and Construct
	Paper-I (ELC-123)	Practical (Lab-IB)	flip-flops, counters and shift
			registers.
			CO 2: Simulate synchronous and asynchronous up down
			counters.
			CO 3: Use of OPAMP as
			comparator and its use in DC
			motor driving.
			CO 4: Use of OPAMP as
			comparator and its use in DC
			motor driving.
			CO 5: Build and test
			Inverting and non -inverting
			amplifier using OPAMP.

		CO6-Build and test adder and
		subtractor circuits using OPAMP.
I Mathematics Paper-I- (MTC-121)	Linear Algebra	CO 1: understand vector spaces and subspaces. CO2: Find Null spaces, column spaces. CO 3: Find Linearly independent sets and basis for vector spaces. CO4: Obtain eigenvalues and eigenvectors, characteristic equation. CO5: perform diagonalization of matrices, linear transformations.
I Mathematics Paper-II - (MTC-122)	Graph Theory	CO1: Understand basic terminologies and results of Graphs, Graphs models. CO 2: Know the types of Graphs, Types of the Diagraphs, Isomorphism of the Graphs CO 3: Calculate Adjacency and Incidence Matrix of a Graph. CO 4: Find Sub-graphs, induced sub-graphs of graph. CO 5: Know the Elementary properties of the Connectedness. CO 6: Perform vertex deletion and edge deletion operation on graph. Counting paths between vertices.
I Mathematics Paper- III - (MTC-123)	Mathematics Practical	co 1: Find the Matrix representation and elementary result, isomorphism of graphs, application of special types of graphs. co 2: Shortest path problems, Dijkstra's algorithm co 3: Find Eulerian path, Hamiltonian path, Travelling salesman problem, Chinese Postman Problem.
I Statistics Paper I- (CSST- 121)	Methods of applied Statistics	CO 1: Understand the concept of bivariate data CO 2: Compute and interpret

				Completion as afficient
				Correlation coefficient
				CO 3: Understand the
				concept of Regression
				analysis
				CO 4: Understand the
				concept of multiple
				regression, multiple and
				partial correlation.
	II	Statistics Paper II-	Continuous	CO 1: Understand the
		(CSST- 122)	probability	concept of standard
			distributions and	continuous probability
			testing of	distribution
			hypothesis	CO 2: Identify the situations
				where Uniform, Exponential
				and Parato and Normal
				distribution can be used
				CO 3: Compute probabilities
				corresponding to Uniform,
				Exponential and Parato and
				Normal distribution
	II	Statistics Paper III-	Statistics Practical	CO 1: Understand the
		(CSST- 123)		relationship between two
				variables using scatter plot.
				CO 2: Compute coefficient of
				correlation, coefficient of
				regression.
				CO 3: fitting of various
				regression models and to find
				best fit.
				CO 4: fitting of Normal
				distribution.
S.Y.B.Sc.	T	Computer Science	Data Structures and	CO 1: To use well-organized
(Comp. Sci)	1	Paper-I (CS-231)	Algorithms-I	data structures in solving
(Comp. Sci)		1 apc1-1 (CS-231)	/ Mgoridinis-1	various problems.
				CO 2: To differentiate the
				usage of various structures in
				problem solution CO 3: Implementing
				algorithms to solve problems
				using appropriate data
	т	Commute a Ce'	Cafteria	structures.
	I	Computer Science	Software	CO 1: Compare and chose a
		Paper-II (CS-232)	Engineering	process model for a software
				project development.
				CO 2: Identify requirements
				analyze and prepare models.
				CO 3: Prepare the SRS,
				Design document, Project
				plan of a given software
1		1	1	system.

I	Computer Science Paper-III (CS-233)	Practical course on CS 231 (Data Structures and Algorithms I) and CS 232 (Software Engineering)	CO 1: Select appropriate data structures as applied to specified problem definition. Implement operations. CO 2: like searching, insertion, and deletion, traversing mechanism etc. on various linear data structures. CO 3: Students will be able to implement Linear structures. CO 4: Implement appropriate sorting/searching technique for given problem CO 5: Determine and analyze the complexity of given Algorithms.
I	Electronic Science Paper-I (ELC-231)	Microcontroller architecture & Programming	CO 1: To write programs for 8051 microcontrollers CO 2: To interface I/O peripherals to 8051 microcontrollers CO 3: To design small microcontroller-based projects
I	Electronic Science Paper-II (ELC-232)	Digital communication& Networking	CO 1: Define and explain terminologies of data communication CO 2: Understand the impact and limitations of various digital modulation techniques CO 3: communication to acknowledge the need of spread spectrum schemes. CO 4: Identify functions of data link layer and network layer while accessing communication link CO 5: To choose appropriate and advanced techniques to build the computer network
I	Electronic Science Paper-III (ELC-231)	Practical Course	CO 1: To design and build his/her own microcontroller-based projects. CO 2: To acquire skills of Embedded C programming CO 3: To know multiplexing and modulation techniques useful in developing wireless Application CO 4: Do build and test own

				network and do settings.
S.Y.B.Sc. (Comp. Sci)	II	Computer Science Paper-I (CS-241)	Data Structures and Algorithms-II	CO 1: Implementation of different data structures efficiently CO 2: Usage of well-organized data structures to handle large amount of data CO 3: Usage of appropriate data structures for problem solving
	П	Computer Science Paper-II (CS-242)	Computer Networks-I	CO 1: Have a good understanding of the OSI and TCP/IP Reference Models and in particular have a good knowledge of Layers. CO2: Understand the working of various protocols. CO 3: Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and technologies
	П	Computer Science Paper-III (CS-243)	Practical course on CS 241 (Data Structures and Algorithms II) and CS 242 (Computer Networks-I)	CO 1: Implement operations like searching, insertion, and deletion, traversing mechanism etc. on trees data structures. CO 2: Students will be able to implement Non-Linear data structures. CO 3: Design advance data structure using Non-Linear data structure.
	II	Electronic Science Paper-I (ELC-241)	Embedded System Design	CO 1: To understand the difference between general computing and the embedded systems. CO 2: To know the fundamentals of embedded systems. CO 3: Understand the use of Single board Computer (Such as Raspberry Pi) for an embedded system application. CO 4: Familiar with the programming environment to develop embedded systems and their interfaces with peripheral devices.

				CO 5: To develop familiarity with tools used to develop in an embedded environment.
	II	Electronic Science Paper-II (ELC-242)	Wireless Communication and Internet of Things (IoT)	CO1: Know working of wireless technologies such as Mobile communication, GSM, GPRS. CO 2: Become familiar with 3G and 4G Cellular Network Technologies for Data Connections. CO3: Understand working principles of short-range communication application CO 4: Get introduce to upcoming technology of Internet of Things CO 5: Explore themselves and develop new IoT based applications
	П	Electronic Science Paper-III (ELC-241)	Practical Course	CO 1: To design and develop own smart applications using Raspberry-Pi. CO 2: To write Python program for simple applications. CO 3: To build own IoT based system.
T.Y.B.Sc. (Comp. Sci)	I	Computer science paper I(CS-351)	Operating Systems-I	CO 1: Processes and Thread Scheduling by operating system CO 2: Synchronization in process and threads by operating system. CO 3: Memory management by operating system using with the help of various schemes
	I	Computer science Paper II (CS 352)	Computer Networks – II	CO 1: Student will understand the different protocols of Application layer. CO 2: Develop understanding of technical aspect of Multimedia Systems CO 3: Develop various Multimedia Systems applicable in real time. CO 4: Identify information security goals

T	1	1	
I	Computer Science Paper VII (CS 357)	Practical course based on CS 351	CO 1: Process synchronization CO 2: Processes and Thread Scheduling by operating system CO 3: Memory management by operating system using with the help of various schemes
I	Computer Science Paper III (CS 353)	Web Technologies -I	CO 1: Understand how to develop dynamic and interactive Web Page
I	Computer Science Paper IV (CS 354)	Foundations of Data Science	CO 1: Perform Exploratory Data Analysis CO 2: Obtain, clean/process, and transform data. CO 3: Detect and diagnose common data issues, such as missing values, special values, outliers, inconsistencies, and localization. CO 4: Demonstrate proficiency with statistical analysis of data. CO 5: Present results using data visualization techniques.
I	Computer Science Paper VIII (CS 358)	Practical course based on CS 353 and CS 354	CO 1: Understand how to develop dynamic and interactive Web Page CO 2: Prepare data for use with a variety of statistical methods and recognize how the quality of the data may affect conclusions. CO 3: Perform exploratory data analysis
I	Computer Science Paper V (CS 355)	Object Oriented Programming using Java - I	CO 1: Understand the concept of classes, object, packages and Collections. CO 2: To develop GUI based application
I	Computer Science Paper VI (CS 356)	Theoretical Computer Science	CO 1: Understand the use of automata during language design. CO 2: Relate various automata and Languages.
I	Computer Science Paper VI (CS 359)	Practical Course based on CS 355	CO 1: Use an integrated development environment to

				write, compile, run, and test
				simple object-oriented Java
				programs.
				CO 2: Read and make
				elementary modifications to
				Java programs that solve real-
				world problems.
				CO 3: Validate input in a Java
				program
	I	Computer Science	Python	CO 1: Develop logic for
		Paper X (CS 3510)	Programming	problem solving.
				CO 2: Determine the methods
				to create and develop Python
				programs by utilizing the data
				CO 3: structures like lists,
				dictionaries, tuples and sets.
				CO 4: To be familiar about
				the basic constructs of
				programming such as data,
				operations, conditions, loops,
				functions etc.
				CO 5: To write python
				programs and develop a small
				application project
	I	Computer Science	Blockchain	CO 1: Learn the
		Paper XI (CS 3511)	Technology	fundamentals of Blockchain
				Technology.
				CO 2: Learn Blockchain
				programming
				CO 3: Basic knowledge of
				Smart Contracts and how
				they function.
T.Y.B.Sc.	II	Computer Science	Operating Systems	CO 1: Management of
(Comp. Sci)		Paper I (CS 361)	- II	deadlocks and File System by
_				operating system.
				CO 2: Scheduling storage or
				disk for processes.
				CO 3: Distributed Operating
				System and its architecture and
				the extended features in mobile
				OS.
	II	Computer Science	Software Testing	CO 1. To understands various
		Paper II (CS 362)		software testing methods and
				strategies.
				CO 2. To understand a variety
				of software metrics, and
				identify defects and managing
				those defects for improvement
				in quality for given software.
				CO 3. To design test cases and
				test plans, review reports of

			tasting for qualitations fa-
			testing for qualitative software. CO 4. To understand latest testing methods used in the software industries.
TT	<u> </u>	D	
II	Computer Science Paper VII (CS 367)	Practical course based on CS 361	CO 1: Management of deadlocks by operating system CO 2: File System management CO 3: Disk space
			management and scheduling for processes
II	Computer Science Paper III (CS 363)	Web Technologies – II	CO 1: Build dynamic website. CO 2: Using MVC based framework easy to design and handling the errors in dynamic website.
П	Computer Science Paper IV (CS 364)	Data Analytics	CO 1: Use appropriate models of analysis, assess the quality of input, and derive insight from results. CO 2: Analyze data, choose relevant models and algorithms for respective applications CO 3: Understand different data mining techniques like classification, prediction, clustering and association rule mining CO 4: Apply modeling and data analysis techniques to the solution of real-world business problem
II	Computer Science Paper VIII (CS 368)	Practical course based on CS 363 and CS 364	CO 1: Build dynamic website. CO 2: Using MVC based framework easy to design and handling the errors in dynamic website.
II	Computer Science Paper V (CS 365)	Object Oriented Programming using Java - II	CO 1: To access open database through Java programs using Java Data Base Connectivity (JDBC) and develop the application. CO 2: Understand and create dynamic web pages, using Servlets and JSP. CO 3: Work with basics of framework to develop secure web applications.
II	Computer Science Paper VI (CS 366)	Compiler Construction	CO 1: Understand the process of scanning and parsing of source code. CO 2: Learn the conversion

II	Computer Science Paper IX (CS 369)	Practical Course based on CS 365	code written in source language to machine language. CO 3: Understand tools like LEX and YACC. CO 1: To Learn database Programming using Java CO 2: Understand and create dynamic web pages using Servlets and JSP. CO 3: Work with basics of framework to develop secure
II	Computer Science Paper X (CS 3610)	Software Testing Tools	web applications CO 1: To understand various software testing methods and strategies. CO 2: To understand a variety of software metrics and identify defects and managing those defects for improvement in quality for given software. CO 3: To design test cases and test plans, review reports of testing for qualitative software. CO 4: To understand latest testing tools used in the software industries.
II	Computer Science Paper XI (CS 3611)	Project	CO 1: To understand how to do the project in IT Industry. CO 2: Using this small project student understand how to do. CO 3: Understand how to present project and how to design it.

Prof. A.P.Kulkarni Department of Computer Science