M. Sc. (II) Organic Chemistry

Programme Specific Outcome

PSO1	Familiar with the different branches of chemistry like Stereochemistry, Spectroscopy,
	Medicinal, Asymmetric Synthesis, Carbohydrate Chemistry Heterocyclic Chemistry
PSO2	Able to designing organic syntheses in feasible and economically cheaper method
PSO3	Able to prepare sample for solution preparation, prepare solution of various
	Concentration for synthesis and analysis purpose
PSO4 A	ble to find procedure form literature to synthesize separate & purify compounds in
	laboratory and characterize using proper instrumentation techniques.
PSO5	Awarded with use of Organometallic Reagents in Organic Synthesis
PSO6	Learnt Use of Chemistry software's useful in future career such as Research,
	Industries & Academia
PSO7	Develop synthetic methods to maximize rate of reaction along with reduction in
	Byproducts
PSO8	Able to use spectroscopic methods for structure determination of Organic Compounds
PSO9	Able to retrosynthetic approach to design organic syntheses
PSO10	Learnt methods for preparation of specific groups of heterocyclic systems.

M. Sc. (II) Organic Chemistry

Course Outcome

M.Sc	Semester-	CHO-350	Organic Reaction	Semester III: CCTP-7
II	III		Mechanism and Biogenesis	CHO-350: Organic Reaction
				Mechanism and Biogenesis
				At the end of course student will able to
				CO 1. Write reaction mechanism by understanding basic terminologies like electrophile, nucleophile, solvent effects, structural effects, etc
				CO 2. Know methods of generations of free radicals, stability of free radicals, their reactions and applications.
				CO 3. Understand Hammet equation, Hammett plot, reaction constant, Taft equation and solvent effect.
				CO 4. Define terpenes, Isoprene rule, MVA pathway, classification of terpenes and biogenesis of terpenoids which involve 1,2 methyl shift, 1,3 methyl shift, Wagner meerwein rearrangement, oxidative coupling reaction, role of SAM, oxidation and reduction.
				CO 5. Define Alkaloids, classification of alkaloids, process involved in biogenesis of alkaloids like decarboxylation, Schiff base formation, Trans amination reaction.
				CO 6. Understand shikimic acid pathway.

M.Sc	Semester-	CHO-351	Structure	Semester III: CCTP-8
II	III		Determination of Organic Compounds by Spectroscopic Methods	CHO-351: Structure Determination of Organic Compounds by Spectroscopic Methods At the end of course student, CO 1. Recognize spectroscopy in H1 NMR, CMR and Mass Spectrometry CO 2. Learn to interpret H1 NMR, CMR, DEPT, COSY, HETCOR & Mass spectra CO 3. Students trained to solve combined spectra problems CO 4. Understand concepts of 2D NMR Spectrometry, different types of spectra & Applications 5. Understand Principles and Applications of Mass spectroscopy
M.Sc	Semester- III	CHO-352	Stereochemistry and Asymmetric Synthesis of Organic Compounds	Semester III: CCTP-9 CHO-352: Stereochemistry and Asymmetric Synthesis of Organic Compounds At the end of course student will able to — CO 1. Draw conformations of different polysubstituted cyclohexane compounds and calculate their potential energy by considering butane gauche effect, steric effect. CO 2. Understand stereochemical principles involved in reaction of six

				membered ring and other than six membered rings. CO 3. Describe methods of formation of racemization and resolution of racemic mixture. CO 4. Apply crams rule, crams dipolar model, Felkin-Anh model in diastereoselective reaction.
				CO 5. Define asymmetric synthesis, chiral pool and chiral auxiallary.
				CO 6. Understand transition metal catalyzed homogenous asymmetric hydrogenation, epoxidation, dihydroxylation.
				CO 7. Solve problems based on diastereoselectivity by using models.
M.Sc	Semester-	СНО-	Designing Organic	Semester III: CCOP-3
II	III	353(B)	Syntheses and Heterocyclic Chemistry	CHO-353(B): Designing Organic Syntheses and Heterocyclic
				Chemistry
				Chemistry
				Chemistry At the end of course student, CO 1. Knowledge of the retrosynthetic approach to plan

				CO 4. Knowledge of retrosynthetic method for the logical disconnection of complex organic molecules and synthetic organic methods CO 5. Understand heterocyclic Chemistry which includes various methods for ring synthesis CO 6. Knowledge of methods for the preparation of specific groups of heterocyclic systems.
M.Sc	Semester-	CHO-354	Practical-I Solvent	Semester III: CCPP-3
II	III		Free Organic Synthesis	CHO-354: Practical-I Solvent Free Organic Synthesis
				At the end of course student,
				CO 1. Student familiar with solvent free synthesis methods
				CO 2. Need of environmentally friendly synthesis processes
				CO 3. Think to develop compounds by of sustainable methods
				CO 4. Understand toxicity and volatile nature of many organic solvents
				CO 5. Use of clays, zeolites, silica, alumina or other matrices in organic synthesis
				CO 6. Use techniques to achieve high degree of stereoselectivity in the products,
				CO 7. Develop synthetic methods to maximize rate of reaction along with reduction in byproducts.

M.Sc	Semester-IV	CHO-450	Chemistry of Natural Products	CHO-450: Chemistry of Natural Products At the end of course student, CO 1. Students should able to learn total synthesis and retrosynthesis of various natural products CO 2. Predict stereochemistry of the intermediate formed in synthesis of drugs CO Understand role of different reagents and reaction mechanism CO 4. Knowledge about importance of drugs, their synthesis, regio and stereoselectivity CO 5. Knowledge about different techniques for isolation of natural products.
M.Sc II	Semester-IV	CHO-451	Organometallic Reagents in Organic Synthesis	Semester IV: CCTP-11 CHO-451: Organometallic Reagents in Organic Synthesis Course outcome CO 1. Knowledge about the stability and reactivity of the various types of Organometallic compounds CO 2. Knowledge about transition metal complexes on organic synthesis

				CO 3. Knowledge about carbon – carbon , Carbon – Oxygen , Carbon-Nitrogen Bond formation reactions CO 4. Knowledge about geometrical isomerism that is Syn and antistereochemistry CO 5. Knowledge about catalytic cycles for C-O, C-C, C-N bond formation reactions. CO 6. Well known about Reagents in Organic Chemistry.
M.Sc	Semester- IV	CHO-452	Concepts and applications of Medicinal Chemistry	Semester IV: CBOP-4 CHO-452(A): Concepts and Applications of Medicinal Chemistry
				At the end of course student,
				CO 1. Learnt Chemistry of peptides and proteins, nucleic acids, cofactors/coenzyme
				CO 2. Learnt Chemistry of TPP, PLP, Folic Acid and other vitamins
				CO 3. Understood the Chemistry of diseases, Principle of drug design and development
				CO 4. Learnt Peptides, synthesis, sequencing and their applications in therapeutics
				CO 5. Understood use modern techniques for biomolecules and disease diagnosis.

				CO 6. Learnt Case Study: Design of Oxamniquine & Statins CO 7. Understood the concepts Pharmacokinetics and Pharmacodynamics of drug CO 8. Use of Structure and activity Relationship i.e. QSAR in drug development CO 9. Developments, SAR, Mode of action, limitations and adverse effect of medicines.
M.ScII	Semester-IV	CHO-453	Practical-III Section-I: Ternary Mixture Separation Section-II: Carbohydrates Synthesis and Isolation Natural Products	Semester IV: CBOP-5 CHO-453: Practical-III Section-I: Ternary Mixture Separation Section-II: Carbohydrates Synthesis and Isolation Natural Products At the end of course student, CO 1. Get the idea about monitoring of organic reactions using TLC technique. CO 2. Student will able to learn how to separate ternary mixture. CO 3. Understand about importance and method of synthesis of carbohydrates. CO 4. Knowledge about Various methods for isolation of natural products.

				CO 5. Student will able to handle equipment required for isolation of natural products.
M.Sc	Semester-IV	CHO-454	Practical-II: Convergent and Divergent Organic Syntheses	Semester IV: CCPP-4 CHO-454: Practical-II: Convergent and Divergent Organic Syntheses At the end of course student, CO 1. Get the idea about monitoring of organic reactions using TLC technique CO 2. Understand about importance of quality of product by TLC and physical constant CO 3. Knowledge about purification and separation techniques CO 4. Knowledge about importance of green reagents and methods in organic synthesis. CO 5. Knowledge about single stage synthesis, Convergent and Divergent synthesis.