KTSP Mandal's

Hutatma Rajguru Mahavidyalaya, Rajgurunagar

Science Faculty

Program Outcome:

- 1. Students should be able understand basics of Physics, Chemistry, Botany, Zoology, Mathematics and Statistics.
- 2. Students should be able to understand theory behind the laboratory experiments of Physics, Chemistry, Botany, Zoology, Mathematics and Statistics.
- 3. Students should be able to communicate the scientific ideas effectively.
- 4. Students should be to develop the communication skills, personality development, and interview techniques.
- 5. Students should be able to preparation of application for job, presentation techniques.
- 6. Students should be able to develop the thinking power in scientific problems.
- 7. Students should be able to develop in such a way to handle unexpected situation.
- 8. Arrange the campus interview of national and multinational companies.
- 9. Arrange the program such that, How to face the interview in government and non government offices.
- 10. Training for MPSC/UPSC/Banking examination.
- 11.Develop the social awareness, environmental awareness.
- 12. Develop the ethical, moral and social values in personal.
- 13. Develop the innovation and development skill in science.
- 14.Students should be able to prepare the project and project writing skill.
- 15.Students should be able to develop business ideas and skill.

Department of Chemistry

B.Sc. Chemistry

Programme Outcomes (PO's)

After successful completion of three year degree program in chemistry a student should be able to;

1. Understand the central role of chemistry in our society and use as a basis for ethical behavior.

2. Provide foundation in the fundamentals & application of current chemical & scientific theories.

3. Impart skills in planning and conducting advanced chemical experiments & applying structural-chemical characterization.

4. Prepare laboratory reports that provide a description of the experiment & reasoning clearly.

5. Identify, formulate, analyze & solve problems in the analysis of chemical compounds.

Programme Specific Outcome (PSO's)

1. Student will have knowledge about fundamentals chemical and scientific theories and their applications.

2. Students familiar with the different branches of chemistry like Organic, Inorganic, Physical, Industrial, Medicinal, Analytical, Forensic, Environmental, Biochemistry.

3. Student able to prepare sample for solution preparation, prepare solution of various concentration for synthesis and analysis purpose

4. Students able to find procedure form literature to synthesize separate & purify compounds in laboratory and characterize using proper instrumentation techniques.

5. Understand the causes of environmental pollution and aware about steps to control Environmental Pollution.

6. Develops analytical and problem-solving skills among student.

7. Student able to use appropriate techniques for the qualitative and quantitative techniques for Chemical Analysis.

Class	Semester	Paper no. & code	Subject	Course outcome
F. Y. B. Sc.	Ist	1 and CH101	Physical Chemistry	 At the end of course student, 1.Students will be able to apply thermodynamic principles to physical and chemical process Calculations of enthalpy, Bond energy, 2.Bond dissociation energy, resonance energy. 3.Variation of enthalpy with temperature – Kirchoff's equation. 4.Third law of thermodynamic and its applications. 5.Relation between Free energy and equilibrium and factors affecting on equilibrium constant. 6.Exergonic and endergonic reaction. 7.Gas equilibrium, equilibrium constant and molecular interpretation of equilibrium constant. 8.Van't Haff equation and its application. 9.Concept to ionization process occurred in acids, bases and pH scale. 10.Related concepts such as Common ion effect hydrolysis constant, ionic product, solubility product. 11.Degree of hydrolysis and pH for different salts , buffer solutions.
		2 and CH102	Organic Chemistry	 At the end of course student, 1. The students are expected to understand the fundamentals, principles, and recent developments in the subject area. 2. It is expected to inspire and boost interest of the students towards chemistry as the main subject. 3. To familiarize with current and recent developments in Chemistry. 4. To create foundation for research and development in Chemistry.

		2	Classici	
		3 and	Chemistry	At the end of course student,
		CH103	Practical	1.Importance of chemical safety and Lab
			Course I	safety while performing experiments in
				laboratory
				2.Determination of thermochemical
				parameters and related concepts
				3.Techniques of pH measurements
				4.Preparation of buffer solutions
				5.Elemental analysis of organic compounds
				(non instrumental)
				6.Chromatographic Techniques for
				separation of constituents of mixtures
F. Y.	II nd	1 and	Inorganic	At the end of course student,
B.Sc.		CH201	Chemistry	1.Understand quantum mechanical
				approach to atomic structure
				2. Know periodicity of elements
				3.Understand theories for chemical
				bonding.
				0
				4. Know the various types of bonds
				5. Types of hybridization
				4. Discuss assumption and need of VSEPR
				theory.
		2 and	Analytical	At the end of course student,
		CH202	Chemistry	1.Know about basics of analytical
				chemistry.
				2.Know some analytical techniques of
				analysis.
				3.Define term mole, milimole, molar
				concentration, molar equilibrium
				concentration and Percent Concentration.
				4. Qualitative analysis of organic
				compounds-type determination, element
				detection, purification techniques
				4.Understand theoretical background for
				Paper and Thin Layer Chromatography.
				5. Application of pH meter
		3 and	Chemistry	At the end of course student,
		CH203	Practical –II	1.Aware with Inorganic Estimations using
				volumetric analysis
				2.Able to synthesize some Inorganic
				compounds by following given procedure
				3.Analyze commercial products available
				in the market
	www.d			4. Able to purify organic compounds.
S. Y.	III rd	1 and	Physical and	At the end of course student,
B.Sc.		CH301	Analytical	1. Explain concept of kinetics, Rate of

· · · · · ·		r		· · · · · · · · · · · · · · · · · · ·
			Chemistry	reaction, rate laws, and order.
				2. Derive integrated rate laws, expression
				for half-life and examples of zero order,
				first order, and second order reactions,
				Graphical method, Energy of activation,
				Arrhenius equation
				3. Define adsorption, classification of given
				processes into physical and chemical
				adsorption, Classification of adsorption
				isotherms, Langmuir adsorption isotherm,
				Freudlich's adsorption, BET Theory.
				4. Discuss the types of volumetric analysis
				methods –Neutralisation titrations,
				complexometric titrations, Redox titrations,
				Precipitation titration
				5. Apply volumetric methods of analysis
				to real problem in analytical chemistry.
				6. Define and explain the meaning of
				accuracy and precision, solved problems
				based on standard deviation.
		2 and	Inorganic and	At the end of course student,
		CH302	Organic	1. Explain molecular orbital theory,
			Chemistry	Werner's theory of coordination
			chemistry	compounds
				2. Define different terms related to
				molecular orbital theory and coordination
				chemistry 147
				3. Explain synthesis of aromatic
				hydrocarbons, mechanism of reactions
				involved.
				4. Explain important reactions of aromatic
				hydrocarbon.
				5. Write / discuss the mechanism of
				Nucleophilic Substitution (SN1, SN2 and
				SNi) reactions.
				6. Identify and draw the structures
				alcohols / phenols from their names or
				from structure name can be assigned.
l	Li		L	nom subovero nume cun de assigned.

3 and CH303Practical Chemistry-IIIAt the end of course student, 1. Correlate theory to experiments. 2. Understand systematic meth identification of substance by c	
2. Understand systematic meth	
identification of substance by c	
identification of substance by e	hemical
methods.	
3. Perform organic and inorganic s	ynthesis
and trace chemical reaction by	suitable
method i.e. (colour change, ppt. for	mation,
TLC).	
4. Set up the apparatus / prep	are the
solutions - properly for the d	
experiments.	U
5. Perform the quantitative c	hemical
analysis of substances explain pr	
behind it.	r ~
6. Systematic working skill in lal	oratory
will be imparted in student.	Jointory
IV th 1 and Physical and At the end of course student,	
CH401 Analytical 1. Define the terms in phase equivalent	luilibria
	system,
components in system, degree of f	
one / two component system, pha	se rule,
etc.	
2. Explain thermodynamic aspects	of Ideal
61	change,
Volume change, Enthalpy chan	-
entropy change of mixing of Ideal s	
3. Explain solubility of partially 1	niscible
	critical.
Solution temperature, lower	critical
solution temperature and havin	g both
UCST and LCST.	
4. Define different terms in conduc	tometry
	uctance,
resistance, conductance, Ohm's la	w, cell
	uivalent
,	uctance,
Kohlrausch's law, etc.	
5. Apply conductometric meth	ods of
analysis to real problem in an	alytical
laboratory.	
6. Explain terms in Colorimetry	such as
radiant power, transmittance, abso	orbance,
molar, Lamberts Law, Beer's Law	, molar
absorptivity	
7. Apply colorimetric methods of	analysis

				to real problem, analysis in analytical
				laboratory.
		2 and	Inorganic and	At the end of course student,
		CH402	Organic	1. Explain different types of isomerism in
			Chemistry	coordination complexes.
				2. Apply principles of VBT to explain
				bonding in coordination compound of
				different geometries, limitation of VBT.
				3. Explain principle of CFT.
				4.Explain spectrochemical series,
				tetragonal distortion / Jahn-Teller effect in
				Cu (II) Oh complexes. 148
				5. Explain structure, synthesis, mechanism
				reactions aldehydes and ketones,
				carboxylic acids and their derivatives,
				amines and cyclohexane.
				6.Give synthesis diazonium salt from
				amines and reactions of diazonium salt.
		3	Practical	
		-		At the end of course student,
		andCH403	Chemistry-IV	1. Correlate the theory to the experiments.
				Understand / verify theoretical principles
				by experiment or explain practical output
				with the help of theory.
				2. Understand systematic methods of
				identification of substance by chemical
				methods. 3. Write balanced equation for all
				the chemical reactions performed in the
				laboratory.
				4. Perform organic and inorganic synthesis
				and able to follow the progress of the
				chemical reaction.
				5. Set up the apparatus properly for the
				designed experiments.
				6. Perform the quantitative chemical
				analysis of substances and able to explain
				principles behind it.
T. Y. B.	V th	1 and	Physical	At the end of course student,
Sc.		CH501	Chemistry-1	1.Know historical of development of
				quantum mechanics in chemistry and
				understand terms involved in quantum
				chemistry.
				2.Understand the term additive and
				constitutive properties.
				3.Explain Raman spectra: Concept of
				polarizability, Pure rotational Raman
				spectra of diatomic molecules, Energy

		Expression, Selection rule, Rotational
		energy level diagram, Rotational Raman
		spectrum and Problems
		4. Discuss difference between thermal and
		photochemical processes.
		5.Know photochemical reactions:
		photosynthesis, photolysis, photocatalysis,
		photosynthesis, photosysis, photocatarysis, photosensitization, Various photochemical
		1
		phosphorescence, Chemiluminescence,
		6.Solve numerical Problems.
		At the end of course student,
CH	Chemistry-	
		the gravimetry, spectrophotometry,
		parameters in instrumental analysis,
		qualitative analysis.
		2. Perform quantitative calculations
		depending upon equations student has
		studied in the theory. Furthermore, student
		should able to solve problems on the basis
		of theory.
		3. Design analytical procedure for given
		sample, discuss procedure for different
		types analyses included in the syllabus.
		4. Select particular method of analysis if
		analyte sample is given to him.
		5. Differentiate / distinguish / Compare
		among the different analytical terms,
		process and analytical methods.
		6. Apply whatever theoretical principles he
		has studied in theory during practical
		session in laboratory.
3 a	nd Dhysiaal	•
		At the end of course student,
Сн	503 Chemistry	
	Practical –	
		2. Calibrate and use pH meter for analysis.
		3. Prepare of buffer solutions and measure
		its pH.
		4.Determine the indicator constant of
		methyl red indicator by colorimetry
		5.Determine the titration of a mixture of
		weak acid and strong acid with strong
		alkali.
		6. Do qualitative analysis of vitamin by
		Photoflurometry.

	· ·	
4 and CH504	Inorganic Chemistry – I Industrial	At the end of course student, 1. Explain electro-neutrality principle and Nephelauxetic effect towards covalent bonding, explain Charge Transfer Spectra 2. Explain MOT of Octahedral complexes with sigma bonding and compare the different approaches to bonding in Coordination compounds. 3. Understand Tran's effect and applications of Trans effect, Stereochemistry of mechanism 4. Gain the knowledge of inorganic reaction mechanisms available in the literature to solve chemical problems. 5. Explain metal, non-metal, insulator & semiconductor with intrinsic and extrinsic properties. At the end of course student,
CH505	Chemistry – I	 At the end of course student, 1. Know various industries, aspects and importance of chemical industry. 2. Explain manufacture of sugar, fruit juice, dye, soap and pigment 3. Aware of Fermentation Industry and manufacturing of ethyl alcohol by using molasses and fruit juice. 4. Understand chemistry of soap and different types of soap products, 5. Explain: Dyes its classification, synthesis, Structures, properties and applications of dyes.
6 and CH506	Inorganic Chemistry Practical – I	At the end of course student,1. Verifytheoreticalprinciplesexperimentally2. Conceptualunderstandingofelectrogravimetricprinciple,NumericalProblems3. Principlesofcommon3. Principlesofcommonon4. Factorsaffectingon4. Factorsaffectingonsolubility5. Prepare ofinorganic complexesandspottestsformetalionsand6. Qualitativeandconfirmatorytestsof
7 and	Organic	inorganic toxicants. At the end of course student,

r			
	CH507	Chemistry – I	 Define and classify, draw structure, synthesis polynuclear and hetreonuclear aromatic hydrocarbons & Understood their reactivity, meaning of active methylene group & its Reactivity To predict product with planning or supply the reagent/s for these reactions Learnt different types of rearrangement and intermediate formed Able to write the mechanism of rearrangement reactions and their applications Understand stereochemistry by using models and learn reactivity of geometrical isomers Orientation and reactivity in E1 and E2 elimination and factors affecting them Use of Hoffmann and Saytzeff's Orientation as per stereochemistry.
	8 and CH508	Chemistry of Biomolecules	At the end of course student, 1.Understood the Cell types its Biological composition 2.Award with different biomolecules and their stereochemistry 3. Award with types of carbohydrates with examples their chemical and structural properties, their biochemical significance 4. Know to the types of lipids with examples, structure of lipids, properties of lipids 5. Learnt structure and types, properties & structure of amino acids & protein 6. Known to enzymes with subclasses and examples and their industrial applications 7. Learnt Basic concepts of Endocrinology, 8. Student understood the different types of Endocrine glands with their hormones, biological nature and mechanism of action.
	9 and CH509	Organic Chemistry Practical I	At the end of course student, 1.Separate, purify and analyse binary water-soluble and water insoluble mixture. 2.Understand the techniques involving drying and recrystallization by various method. 3. Learn the confirmatory test for various functional groups, special elements.

		1		
				4. Systematic working skill in laboratory will be imparted in student.
				5.Learn the basic principles of green and
				sustainable chemistry.
				6.Learn the preparations of derivative
				various functional groups aspects of
				electrical experiments.
				7.Use of Chromatogragraphic techniques
				in chemical analysis.
		10 and	Introduction to	At the end of course student,
		CH510A	Medicinal	1. Award with fundamentals of medicinal
			Chemistry	chemistry and its importance
				2. Understood concept of Pharmacology,
				Pharmacophore, Pharmacodynamics,
				Pharmacokinetics, metabolites,
				antimetabolites and therapeutic index
				3.Understood overall process of drug
				discovery & drug mechanism of action
				4. Importance of stereochemistry of drugs
				and receptors for biological effect.
				5.Know mechanism of action of drugs
				belonging to the classes of infectious and
				noninfectious diseases.
		11 and	Environmental	At the end of course student,
		CH511A	Chemistry	1. Understand importance and conservation
				of environment, biogeochemical cycles,
				Hydrological Cycle.
				2. Know water resources and water quality
				parameters 3. Aware of organic and inorganic
				3. Aware of organic and inorganic pollutants, surfactants, toxic chemicals
				causing water pollution
				4. Understand water parameters monitoring
				techniques and methodology.
	VI th	1 and	Physical	At the end of course student,
		CH601	Chemistry-II	1.Understand concepts in electrochemistry,
				electrochemical series, electrodes, Primary
				Batteries, Secondary Batteries, etc.
				2.Explain diagram, Construction,
				representation, working and limitation of
				primary reference electrode, calomel
				electrode, glass electrode, silver-silver
				chloride electrode.
				3.Know types of Reversible electrodes
				with respect to examples, diagram,
1			1	representation, construction, working

2 and	Dhugingl	 (electrode reactions) and electrode potential. 4.Explain the term crystallography and laws of crystallography. 5.Understand Radioactivity, types of radioactive decay types and properties of radiations, detectors and application of radioisotopes 6. Solve the problems.
2 and CH602	Physical Chemistry-III	At the end of course student, 1.Understand meaning of the terms- Solution, electrolytes, non electrolytes and colligative properties, 2.Know application of colligative properties to determine molecular weight of non electrolyte, abnormal molecular weight, 3. Factors affecting on solid state reactions, 4.Explain phenomena of photoconductivity, conductors and insulators, semiconductors 5. Numerical based on cohesive energy.
3 and CH603	Physical Chemistry Practical –II	At the end of course student, 1.Understand method of analysis by potentiometric titration, pH-metric titration, turbidometry 2.Explain colligative properties of material like polymer. 3.Determine the molecular weight of solute by depression in freezing point method 4.Prepare buffer solutions and measure its pH by pH-metry. 5.Analyze of crystal structure from X-ray diffraction spectra.
4 and CH604	Inorganic Chemistry –II	 At the end of course student, 1. Understand organometallic chemistry, method of synthesis of compounds 2. Know the phenomenon of catalysis, its basic principles and terminologies. 3. Understand the role of metals in non- enzymatic processes. 4. Explain the functions of hemoglobin and myoglobin in O2 transport and storage. 5. Know thy types of Inorganic polymers, comparison with organic polymers, synthesis, structural aspects of Inorganic

		polymers.
5 and	Inorganic	At the end of course student,
CH605	-	,
C1100.5	5 Chemistry –III	1. Learn the concept of acid, base and their
		theories.
		2. Know the crystal structures of solids,
		simple cubic, BCC and FCC structures
		3. Know the defects in Ionic solids,
		differentiate between the defects.
		4. Synthase Zeolite and their structure,
		Know application of zeolites
		5. Learn various methods of nanoparticle
		synthesis
		6. Know toxic chemical in the
		environment, explain biological
		methylation.
6 and	Inorganic	At the end of course student,
CH606	-	1. Volumetric Estimations of Calcium, Cu,
	Practical –II	Phosphate, Iodine from products
		2. Estimation of Na, K by flame
		photometry by calibration curve method
		and regression method.
		3. Purification of water using cation/anion
		exchange resin and analysis by qualitative
		analysis
		4. Synthesize nanoparticles of silver, ZnO.
		•
 7 and	Organia	5. Explain UV spectra of nanomaterial. At the end of course student,
	Organic Chamistry, H	,
CH607	Chemistry –II	1. Award with principle & instrumentation
		in UV, Mass, IR & NMR Spectroscopy.
		2. Determine the structure of simple
		organic compounds on the basis of spectral
		data such as λ max values, IR frequencies,
		chemical shift (δ values).
		3. Determine λ max value from structure
		of compound.
		4. Read UV, Mass, IR & NMR Spectrum
		interpret them to determine structure of
		organic compound 5. Explain
		stereochemistry of cyclohexane and
		decalin.
8 and	Organic	At the end of course student,
CH608	_	1. Use retrosynthesis for synthesis of
		target molecule from commercially
		available synthetic equivalents
		2. Aware with the Terms - Disconnection,
		Synthons, Synthetic equivalence, FGI, TM.

		 3. Apply knowledge of Organic Reaction Mechanism in Synthetic of organic compounds 4. Know oxidizing reagents and reducing reagents for synthesis of organic compound.
		5. Explain natural products like terpenoids, Alkaloids and their importance.
9 and CH609	Organic Chemistry Practical –II	At the end of course student, 1. Handling of chemicals & Glassware with safety 2. Able to read infrared spectrum Identify the functional group or groups present in a compound. Interpret IR and NMR spectra 3. Apply learnt Chemistry principles in practical 4. Trained with hands-on experience of modern extraction methods. 5. Able to determine and use chromatography techniques for purification, separation of organic
		compounds.
10 and CH610A	Chemistry of Soils and Agrochemicals	At the end of course student, 1. Understood various components of soil and soil properties and their impact on plant growth. 2. Understood the classification of the soil. 3. Explores the problems and potentials of soil and decide the most appropriate treatment for land use. 4. Understood the Reclamation and management of soil physical and chemical constraints. 5. Useful in making decisions on nutrient dose, choice of fertilizers and method of application etc. practiced in crop production. 6. Got experience on advanced analytical and instrumentation methods in the estimation of soil. 7. Understood various Nutrient management concepts and Nutrient use efficiencies of major and micronutrients and enhancement techniques. 8. Proper understanding of chemistry of

			
			pesticides will be inculcated among the
			students.
			9.Imparts knowledge on different
			pesticides, their nature and, mode of action
			and their fate in soil so as to monitor their
			effect on the environment.
	11 and	Analytical	At the end of course student,
	CH611A	-	1. Define basic terms in solvent
	CHOITA	Chemistry-II	
			extraction, basics of chromatography,
			HPLC, GC, and AAS and
			AES. Some important terms are: solvent
			extraction, aqueous and organic phase,
			distribution ratio and coefficient, solute
			remain unextracted, percent extraction, ion
			association complex, theoretical plate,
			HETP, retention time, selectivity,
			resolution, stationary phase, normal and
			reverse phase, ion exchange, column
			efficiency, carrier gas, split and spitless
			injection, packed column, tubular column,
			atomic absorption and emission
			spectroscopy, electronic excitation in
			atoms, nebulization, atomization,
			reduction of metal ions in flame,
			absorbance by atoms in
			flame, flame atomizers, furnace atomizers,
			interference in AES and FES, HCL,
			hydride generator, etc.
			2. Identify important parameters in
			analytical processes or estimations.
			Example: minimum analyte concentration
			in particular method, reagent concentration
			for particular analysis, reagent
			for particular analysis, reaction condition
			to convert analyte into measurable form,
			wavelength selection in HPLC with
			spectrophotometric and fluorometric
			detector, solvent or carrier gas in
			HPLC and GC, choice method for the
			sample preparation in atomic
			spectroscopic methods, choice of filter and
			HCL in atomic spectroscopic methods, etc.
			3. Explain different principles
			involved in the analyses using solvent
			extraction, basics of instrumental
			chromatography, HPLC, GC, and atomic

	 spectroscopic techniques. 4. Perform quantitative calculations depending upon equations students has studied in the theory. Furthermore, student should able to solve problems on the basis of theory. 5. Discuss / Describe procedure for different types analyses included in the syllabus. 6. Select particular method of analysis if analyte sample is given to him. 7. Differentiate / distinguish / compare among the different analytical terms, process and analytical methods. 8. Demonstrate / explain theoretical principles with help of practical.
	principles with help of practical. 9. Design analytical procedure for given sample.