Syllabus Completion Report (Sem-I)

(2021-22)

T.Y.B.Sc. PH 335: Computational Physics

Sr. No.	CompletedTopics	Month
01	1.Concepts of programming: Definition and Properties of algorithms, Algorithm development,	28/10/2021
02	Algorithm development, Flow charts- symbols and simple flowcharts	To 01/11/2021
03	Flow charts and Algorithms for Kinematic equations, Free fall, Equation of state, Factorial of a number.	
04	Types of programming language: Lower, middle and higher level languages.	
05	1. C Programming Structure of C program, Character set, key words,	
06	Constants andvariables, Variable names,	
07	Data types and their declarations, Symbolic Constants.	15/11/2021 To 15/12/2021
08	Input/output functions: scanf (), printf (), getchar (), putchar (), getch (), gets (), puts ().	
09	Operators and Expressions: Arithmetic Operators, Relational Operators, LogicalOperators,	
10	Assignment Operators, Conditional Operator. Formatted input/output	
11	Control statements: If, if else, while, do while for loop, nested control structures	

12	(nested if, nested loops), break, continue, switch- case statement, goto statement.	
13	Use of Library functions: e.g. mathematical, trigonometric, graphics.	
14	3. Arrays and Pointers in C Arrays: 1-D, 2-D and String	20/12/2021
15	Examples: Arranging numbers in descending and ascending order,	To 21/12/2021
16	Sum of matrices, multiplication of matrices.	
17	Concept of Pointers	
18	4. User Defined Function in C User defined functions: Definitions and declaration of function, function prototype.	22/12/2021 To 29/12/2021
19	Passing arguments (Call by value, Call by reference).	29/12/2021
20	Storage Classes: Auto, External, Static, Register variables.	
21	5. Graphics in C: Some simple graphic commands - Line, Circle, Arc, Ellipse, Bar., Problems	04/01/2022 To 06/01/2022
22	6. Computational Physics: Errors in Computation: Inherent errors in storing numbers due to finite bit representation to use inComputer, Truncation error, round off errors	
23	Iterative methods: Discussion of algorithm and flowcharts and writing Cprograms for finding	07/01/2022
24	single root of equation using bi-section method, NewtonRaphsonmethod.	to 12/02/2022
25	Discussion of algorithm and flowcharts and writing C program for trapezoidalrule and Simpson's 1/3rd rule	

Dr. V.D.Kulkarni

T.Y.B.Sc. PH 353 Classical Mechanics (Sem-I)

Sr. No.	CompletedTopics	Dates
1	4. Langrangian and Hamiltonian formulation 1 Limitations of Newtonian formulation	
2	Types of constraints, degrees of freedom, generalized coordinates, configuration space	
3	D' Alembert's principle of virtual work	12/02/2022 To
4	Langrangian equation from D' Alembert's principle, cyclic coordinates,problems	02/02/2022
5	Phase space, Hamiltonian's equations State of Systems, Ensembles	

Prof. V.D.Kulkarni

Dr. V.D.Kulkarni, Dept of Physics HutatmaRajguruMahavidyalaya, Rajgurunagar (Pune)

Syllabus Completion Report (2021-22)

T.Y.B.Sc. (Sem-VI)

Thermodynamics and Statistical Physics (PH-363)

Sr. No.	Completed Topics	Dates
01	Ch-1 - Kinetic Theory of gases	30/03/2022
	Mean Free Path Theory of gases	
02	Transport Phenomena, Viscosity	31/03/2022
03	Thermal conductivity and diffusion	01/04/2022
04	Thermodynamic functions	04/04/2022
05	Enthalpy, Entropy, Internal Energy, Helmholtz Functions	05/04/2022 06/04/2022
06	Maxwell's relations	07/04/2022
07	First and Second TdS equations Specific and Latent heat equations	08/04/2022
08	Joule – Thomson's effect,	09/04/2022
0.0	Problems	11/01/2022
09	Ch-2- Elementary Concepts of Statistics Probability ,Distributions functions,Problems	11/04/2022
10	Random Walk Problem and	12/04/2022
11	Bionomial distribution	12/04/2022
11	Simple Random Problem, Calculation of mean Values	13/04/2022
12	Probability distribution for large N	16/04/2022
13	Gaussian Probability distribution	18/04/2022
	and Problems	
14	Ch-3- Statistical distribution of system of particles and Ensembles	19/04/2022
	State of Systems, Statistical Ensembles	
	Completed Topics	Dates
Sr. No.		
15	Basic Postulates,	21/04/2022
1 -	Probability Calculations	22/04/2022
16	Behavior of density of states	22/04/2022

17	Thermal. Mechanical Interactions, Problems	25/04/2022
18	Micro canonical Ensembles, Canonical Ensembles	26/04/2022
19	Applications of Canonical Ensembles	27/04/2022
20	Molecules in ideal gas, Mean Values in Canonical Ensembles,	28/04/2022
	Problems	29/04/2022
21	Ch-4-Introduction to Quantum States	02/05/2022
	Quantum distribution function	
22	Maxwell – Boltzman Statistics,	04/05/2022
	Bose – Einstein Statistics	05/05/2022
23	Fermi – Dirac Statistics	09/05/2022
24	Comparisions of B-E,M-B,F-D Statisctics, Applications of	10/05/2022
	Quantum Statstics	12/05/2022
25	Problems	13/05/2022
		14/05/2022
26	Internal Test	18/05/2022

PHY-3610 SEC (Z): Calibration Techniques

	Activity:	19May
1	 RTD calibration check Calibration of digital balance Calibration of PH/Conductivity meter Calibration of Volt meter Calibration of Current meter Calibration of Oscilloscopes 	2022 – 24 May 2022

¹⁾ T.Y.B.Sc.:- Practicals of one batch of Semester -1 and 2 completed in Academic Year 2021-2022.

- **2)** Projects of T.Y.B.Sc Students.:- Projects of one batch of Semester -1 and 2 completed in Academic Year 2021-2022.
- 3) F.Y.B.Sc.:- Practicals of Semester -1 and 2 completed in Academic Year 2021-2022.

Dr. V.D.Kulkarni

Year: 2021-2022

Teacher: A.B.Kanawade

Syllabus completion Report

T.Y.B.Sc. Physics (Sem V) PHY-351: Mathematical Methods in Physics-II

Chapte	Mont	Contents	Remarks
r No.	h		
1	Nov / Dec	1: Curvilinear Co-ordinates	
	2021	Review of Cartesian, spherical and cylindrical co-ordinate,	
		transformation equation, General Curvilinear co-ordinate system:	
		Co-ordinate surface, co-ordinate lines, length, surfaces and	
		volume elements in curvilinear co-ordinate system.	
		Orthogonal curvilinear co-ordinate system, expressions for gradient, divergence,	
		Laplacian, and curl, special case for gradient,	
		divergence and curl in Cartesian, spherical polar	
		and cylindrical co-ordinate system,	
		Problems.	
2	Dec 2021	2: The Special Theory of Relativity	
		Introduction,	
		Newtonian relativity, Galilean transformation equation,	

		Michelson-Morley experiment,	
		Postulates of special theory of relativity,	
		Lorentz transformations,	
		Lorentz transformations,	
		Kinematic effects of Lorentz transformation,	
		Length contraction,	
		Proper time, Problems.	
2	Dec /	3: Partial Differential Equations	
3	Jan 2021	Introduction to Partial differential equations (PDE),	
		General methods for solving second order PDE,	
		Method of separation of variables in Cartesian,	
		Spherical polar and cylindrical co-ordinate system (two dimensional Laplace's equation,	
		one dimensional Wave equation),	
		Singular points $(x = x0)$,	
		Solution of differential equation-Statement of Fuch's theorem,	
		Frobenius method of series solution.	
_	Jan /	4: Special Functions	
4	Feb 2021	Introduction, generating function for Legendre Polynomials: $P_n(x)$,	
		Properties of Legendre Polynomials,	
		Generating function for Hermite Polynomials: H _n (x),	
		Properties of Hermite Polynomials,	
		Bessel function of first kind: $J_n(x)$,	

Bessel function of first kind: $J_n(x)$,	
Properties of Bessel function of first kind,	
Problems.	

Syllabus completion Report

T.Y.B.Sc. Physics (Sem V) Year: 2021-2022 PHY-3510 SEC (K): Smart Sensors and Transducer Technology, Teacher: A.B.Kanawade

Chapte	Mont	Contents	Remarks
r No.	h		
1	Oct 2021	1) Mechanical and Electromechanical sensor:	
	2021	Definition, principle of sensing & transduction, classification.	
		Resistive (potentiometric type): Forms, material, resolution, accuracy, sensitivity.	
		Strain gauge: Theory, type, materials, design consideration,	
		sensitivity, gauge factor, variation with temperature, adhesive, rosettes.	
		LVDT: Construction, material, output input relationship, I/O curve, discussion.	
2	Nov 2021	2) Capacitive sensors:	
		Variable distance-parallel plate type, variable area- parallel plate,	
		serrated plate/teeth type and cylindrical type,	
		Variable dielectric constant type, calculation of sensitivity.	

		Stretched diaphragm type: microphone, response characteristics.	
	Nov/	3) Thermal sensors:	
3	Dec 2021	Material expansion type: solid, liquid, gas & vapor	
		Resistance change type: RTD materials, tip sensitive & stem sensitive type.	
		Thermo emf sensor: types, thermoelectric power, general consideration,	
		Junction semiconductor type IC and PTAT type.	
	Dec	4) Magnetic sensors:	
4	2021	Sensor based on Villari effect for assessment of force, torque, proximity,	
		Wiedemann effect for yoke coil sensors,	
		Thomson effect, Hall effect, and Hall drive,	
		performance characteristics.	
		Radiation sensors: LDR.	
_		Activity:	
5	Dag	Based on chapter I	
	Dec 2021/ Jan	1) Linear displacement measurement using LVDT.	
	2022	Based on chapter II	
		2) Displacement/pressure measurement using microphone.	
		Based on chapter III	
		3) Measurement of temperature using Thermocouple transducer.	
	Jan /	4) Silicon diode as temperature sensor	
	Feb 2022	Based on chapter IV	
	1		

5) Magnetic sensor/Hall effect/proximity sensor based measurement magnetic susceptibility magnetisation	
6) LDR based measurement light intensity etc.	

Syllabus completion Report

Year: 2021-2022

Teacher: A.B.Kanawade

S.Y.B.Sc. Physics (Sem III) PHY-232(A): Electronics-I

Chapte	Mont	Contents	Remarks			
r No.	h					
	Oct /	1. Network Theorem:				
1	Nov 2021	1.1 Krichhoff's Law				
		1.2 Voltage and current Divider Circuit				
		1.3 Thevenin's Theorem				
		1.4 Norton's Theorem				
		1.5 Superposition Theorem				
		1.6 Maximum Power transfer theorem (With proof) 1.7 Problems				
	Nov/	2. Study of Transistor				
2	Dec 2021	2.1 Bijunction Transistor				
		1. Bipolar Junction Transistor, Types, Symbol and basic action.				
		2. Configuration (Common Base, Common Emitter and Common Collector)				
		3. Current Gain Factors (α and β) and their relations				

	1				
	 4. Input, Output and transfer Characteristic of CE Configuration 5. Biasing method and Voltage Divider 6. DC Load line (CE), Operating Point (Q-point) 7. Transistor as a switch, 8. Problems 				
		2.2 Uniunction Transistor:			
		1. Symbol, Types, Construction, Working Principle, I-V characteristics, Specifications and parameters of Unijunction Transistor (UJT)			
		2. UJT as a relaxation Oscillator.			
3	Jan 2022	3.Operational Amplifiers and Application 3.1 Operational Amplifiers: 1. Introduction			
		2. Ideal and practical Characteristics3. Operational Amplifier: IC741-Block Diagram and Pin diagram			
		4. Concept of Virtual Ground			
		5. Inverting and Non-inverting operational amp with concept of gain			
		6. Operational amplifier as an adder and subtractor			
		7. Problems			
		3.2 Oscillators:1. Concept of Positive and negative feed back			
		2. Barkhausein Criteria for an oscillator			
		3. Construction, working and application of phase shift oscillator using IC741			
		4. Problems			
4	Jan / Feb 2022	4. Number System and Logic Gates 1. Number System: Binary, Binary coded Decimal (BCD), Octal, Hexadecimal			

2. Addition and Subtraction of binary numbers and binary fractions using one's and two's complement
3. Basic Logic gates (OR, AND, NOT)
4. Derived gates: NOR, NAND, EXOR, EXNOR, with symbols and truth table
5. Boolean Algebra
6. De Morgan's theorem and its verification, 7. Problems

Syllabus completion Report

T.Y.B.Sc. Physics (Sem VI)
PHY-361: Solid State Physics
Year: 2021-2022
Teacher: A.B.Kanawade

Chapter No.	Month	Contents	Remarks
1	Mar / Apr 2022	1: The Crystalline Structures (10 L) Lattice, Basis, Translational Vectors, Primitive Unit Cell, Symmetry Operations, Different types of lattices: 2D and 3D (Bravais lattices) Miller indices, Inter Planer Distances, SC, BCC and FCC structures, Packing Fraction, Crystal structures NaCl, diamond, CsCl, ZnS, HCP, Concept of Reciprocal Lattice and its properties, Problems	
2	April 2022	2: X ray Diffraction and Experimental Methods (9 L) Bragg's Diffraction, Bragg's Law, Experimental X-ray diffraction Methods: The Laue Method, Bragg's Spectrometer, The Powder Crystal Method, Analysis of cubic structure by Powder Method, Ewald's Construction, Bragg's Diffraction condition in direct and reciprocal lattice, Problems	
3	May 2022	3: Free Electron and Band Theory of Metals (9L) Assumptions of Classical and Somerfield Free Electron model, Energy levels and Density of States (One and Three Dimensions), Nearly free electron model, Fermi energy, Fermi level, Hall Effect, Mobility, Hall Angle	

		Band Theory of Solids: Origin of energy gap, Energy bands in Solids, Distinction between metal, semiconductor and insulator, Problems	
4	May 2022	4: Magnetism (8L) Diamagnetism, Langevin theory of Diamagnetism, Paramagnetism, Langevin theory of Paramagnetism, Ferromagnetism, Antiferromagnetism, Ferromagnetic Domains, Hysteresis, Curie temperature, Neel temperature, Superconductivity, Problems	

Syllabus completion Report

T.Y.B.Sc. Physics (Sem VI)

PHY-362: Quantum Mechanics

Year: 2021-2022

Teacher: A.B.Kanawade

Chapte r No.	Mont h	Contents	Remarks
1 1	April 2022	Origin of Quantum Mechanics: (08 L) 1. Historical Background: Review of Black body radiation, photoelectric effect 2. Matter waves - De Broglie hypothesis Davisson and Germer experiment. 3. Wave particle duality 4. Concept of wave function, wave packet, phase velocity, group velocity and relation between them 5. Heisenberg's uncertainty principle with Electron diffraction	
2	April 2022	The Schrodinger equation: (10 L) 1. Physical interpretation of Wave function 2. Schrodinger time dependent equation. 3. Schrodinger time independent equation (Steady state equation). 4. Requirements of wave function. 5. Probability current density, equation of continuity and its physical significance. 6. An operator in Quantum mechanics Eigen function and Eigen	

		values.	
		7. Expectation value – Ehrenfest's theorem(omly statements),	
		Problems	
3	May	Applications of Schrodinger Steady state equation: (14 L)	
	2022	1. Free particle.	
		2. Step Potential	
		3. Potential barrier(Qualitative discussion), Barrier potential and tunneling effect.	
		4. Particle in infinitely deep potential well (one - dimension).	
		5. Schroedinger equation in spherical polar coordinate system	
		6. Rigid rotator (Free axis) 7. Problems	
5	May	Operators in Quantum Mechanics: (04 L)	
	2022	1. Hermitian operator.	
		2. Position, Momentum operator, angular momentum operator, and	
		total energy operator (Hamiltonian).	
		3. Commutator brackets- Simultaneous Eigen functions.	
		4. Commutator algebra.	
		5. Commutator brackets using position, momentum and angular	
		momentum operator.	
		6. Concept of parity according to quantum mechanics, parity operator	
		and its Eigen values.	
		7. Applications of operators in quantum mechanics	
		8. Problems	
		O. I TOUTCHIS	

Syllabus completion Report

S.Y.B.Sc. Physics (Sem IV)
PHY-242: Optics
Year: 2021-2022
Teacher: A.B.Kanawade

Chapte r No.	Month	Contents	Remarks
1	April	1. Geometrical optics and Lens aberrations: (12L)	
	2022	(a) Geometrical optics:	
		1.1 Introduction to lenses and sign conventions.	
		1.2 Thin lenses: Lens equation for single convex lens	
		1.3 Lens maker equation	
		1.4 Concept of magnification, deviation and power of a thin	
		lens 1.5 Equivalent focal length of two thin lens system	
		1.6 Concept of cardinal points	
		1.7 Problems	
		(b) Lens Aberrations:	
		1.8 Introduction to Aberration	
		1.9 Types of aberration: Monochromatic and Chromatic	

		Aberration (Only discussion)	
2	April /May 2022	2. Optical Instruments: (6L) 2.1 Introduction to optical instruments 2.2 Types of optical instruments: Simple Microscope, Compound Microscope and Astronomical telescope (only construction and working) 2.3 Eyepiece: Ramsden's eye piece (Expression), Huygens eye piece and Gauss's eyepiece (only qualitative discussion) 2.4 Problems.	
3	May 2022	3. Interference and Diffraction: (12L) (a) Interference: 3.1 Introduction to interference 3.2 Types of Interference (only discussion) 3.3 Phase change on reflection (Stokes treatment). 3.4 Interference due to reflected light 3.5 Interference due to transmitted light. 3.6 Newton's ring (to calculate wavelength) 3.7 Problems (b) Diffraction: 3.8 Introduction to diffraction 3.9 Types of diffraction (only discussion) 3.10 Fraunhoffer's diffraction due to single slit and double slit (only qualitative discussion) 3.11 Plane transmission grating and grating equation (only principal maxima) 3.12 Rayleigh criterion for resolution (only qualitative discussion), 3.13 Problems	
4	May / June 2022	4. Polarization: (6L) 4.1 Introduction to polarization 4.2 Brewster's law 4.3 Malus's Law 4.4 Polarization by double refraction 4.5 Nicol Prism 4.6 Application of polarization 4.7 Problems	

Prof.V.B.Deshmukh

1. FYBSc. Physics II (Physics principles and applications)-41 Lectures

Month	Period	Chapter	Topic
September 2021	6	Physics of Atoms	The concept of atom (Atomic Models: Thompson and Rutherford) Atomic Spectra Bohr Theory Hydrogen atom Spectra Frank Hertz experiment
October 2021	6	LASERS	Absorption, Spontaneous Emission, and Stimulated Emission, Population Inversion and Laser Action, Applications of Lasers Problem solved , Assignment
November 2021	12	Physics of Molecules	Bonding Mechanisms: A Survey Ionic Bonds Covalent Bonds Van der Waals Bonds The Hydrogen Bond Metallic Bond, Variation of potential energy with inter-atomic distance, Concept of Rotational and vibration energy levels of diatomic

			molecule
			Problem solved. Assignment
December 2021	8	Sources of Electromagnetic Waves	Historical Perspective of Electromagnetic Waves Production of electromagnetic waves: Hertz experiment Electromagnetic spectrum Planck hypothesis of photons (Concept only) Sources of electromagnetic waves: Radio waves, Microwaves, Infrared, Visible light, Ultraviolet, X-rays, Gamma rays Problem solved Assignment
January 2022	10	Applications of Electromagnetic Waves	Microwave oven RADAR Pyro- electric thermometer X-ray radiography and CT Scan, applications in medical field Solar cell Revision

TYBSc Physics IV (Atomic and Molecular Physics)-36 Lectures

Month	Period	Chapter	Topic
September 2021	6	Atomic structure	Revision of various atomic models,
			Vector atom model, Pauli's Exclusion Principals and electron configurations, Quantum states, and Spectral notations of quantum states
October	12	One and	Spin-Orbit Interaction
2021		Two valence electron	(Single valence electron
		systems	atom), Energy levels of Na atom, selection rules, spectra
		Systems	of sodium atom, sodium
			Doublet. Spectral terms of
			two electron atoms, terms for
			equivalent electrons, L-S and
			JJ coupling schemes.
			Singlet-Triplet separation
			for interaction energy of L-S
			coupling. Lande Inteval rule,
			spectra of Helium atom
November	4	Zeeman	Experimental arrangement
2021		Effect	Normal and anomalous
			Zeeman Effect, Stark effect(
			Qualitative Discussion),
			Applications of Zeeman
			Effects
December	8	Molecular	Introduction to Molecular
2021		spectroscopy	Spectra and its types
			Rotational energy levels,
			Rotational spectra of
			diatomic molecule, Vibration

		energy levels Rotational and Vibration spectra Electronic spectra of molecules, Applications of UV-Vis spectroscopy Problems
January 2022	Raman spectroscopy	History of Raman effect Classical theory of Raman Effect. Molecular polarizability Quantum theory of Raman Effect
February 2022		Experimental set up for Raman Effect Applications of Raman spectroscopy

TYBSc Skill based course II (Physics Workshop skill)-18 Lectures+ 6 Activity

	` •	* '	•
Month	Period	Chapter	Торіс
September	4	Basic of	Principle and working of
2021		Measurement	digital meters. Comparison
			of analog & digital
			instruments. Characteristics
			of a digital meter.
			Multimeter
			Block diagram and working
			of a digital multimeter.
			Principles of measurement
			of dc voltage and dc current,
			ac voltage, ac current and

			resistance. Specifications of a multimeter and their significance
October 2021	4	Electronic Voltmeter	Principles of voltmeter, Construction (block diagram only).
			Specifications of an electronic Voltmeter and their significance.
			AC Voltmeterand its types, Block diagram ac Milli Voltmeter,
			Specifications and their significance
November 2021	5	Cathode Ray Oscilloscope	Block diagram of basic CRO. Principle and working of CRO
			Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace oscilloscope.
			Introduction to digital oscilloscope, Block diagram and principle and working
December 2021	2	Signal Generators and Analysis Instruments	Block diagram, explanation and specifications of low frequency signal generators. Pulse generator, and function generator
January 2022	3	Impedance Bridges and Q-Meters	Block diagram of bridge. Working principles of basic (balancing type) RLC bridge.

			Specifications of RLC bridge. Block diagram & working principles of a Q- Meter. Digital LCR bridges
December	12	Activity	Use of Digital multimeter,
2021-			Measurement of R, L and C
February			by Q-meter
2022			To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
			To observe the limitations of a multimeter for measuring high frequency voltage and currents.
			Measurement of voltage, frequency, time period and phase angle using CRO. Measurement of rise, fall and delay times using a CRO

1) S. Y. B. Sc. (PHY-241) Oscillations, Waves and Sound

Month	Topic	Period
30/3/2022-	Undamped Free Oscillations	6
12/4/2022	Equilibrium conditions, Equations of linear and angular SHM. Differential equation of linear SHM, Composition of two perpendicular linear SHM for frequency ratio 1:1 and 1:2, Lissajous	

	figures and their demonstrations	
13/4/2022- 01/5/2022	Damped Oscillations Differential equation of damped harmonic oscillator and its solution, different cases, Logarithmic decrement, Energy of damped harmonic oscillator, Quality factor, LCR series circuit	6
02/5/2022- 12/5/2022	Forced Oscillations Equation of forced oscillations and its solution. Resonance, Velocity resonance, Amplitude resonance, Sharpness resonance and half width. Average energy of forced oscillator, Quality factor, LCR series circuit	7
13/5/2022- 16/5/2022	Wave Motion Equation of longitudinal and transverse wave and its solution, energy density and intensity of a wave, Seismic wave and gravitational waves	5
30/5/2022- 31/5 /2022	Sound and Doppler Effect Characteristics of sound, Doppler effect in sound, Expression for apparent frequency in different cases, Symmetric and Asymmetric nature Doppler effect, Applications	5

PHY-243 Physics Laboratory-2B- eight (8) Practicals were completed on April to May 2022

2) T. Y. B. Sc. PHY-364 Nuclear Physics

Month	Topic	Period
25/3/2022-	Nuclear Structure, Properties and	10
8/4/2022	Radioactivity	
	Composition of nucleus, Characteristics of nucleus, Mass defect and Binding energy,	

	packing fraction. Classification of nuclei, stability of nuclei. Radioactive disintegration, properties of α , β , γ rays, Law of radioactive decay, half life, mean life, activity and specific activity, successive disintegration and equilibrium of radioisotopes, Application of radioactivity.	
9/4/2022- 20/4/2022	Particle Accelerator and Radiation Detectors Linear accelerator (LINAC), Cyclic accelerator (Cyclotron), Accelerators in India. Nuclear detectors, G. M. counter and solid state detector.	4
21/4/2022- 29/4/2022	Nuclear forces and Nuclear Models Classification of nuclear forces, Meson theory, properties of nuclear forces, deuteron problem, Elementary particles, Quark models, Shell model, Liquid drop model, Semi-empirical B. E. formula.	8
30/4/2022- 16/5/2022	Nuclear Reactions and Reactor Theory Nuclear reaction and conservation laws, Q value equation, Exothermic and endothermic reaction, compound nucleus, Nuclear fission and fusion reaction, stellar energy, chain reaction and critical mass. Nuclear reactor and its basic components, homogeneous and heterogeneous reactors, power reactor. Nuclear reactor in India.	8

2) T.Y.B.Sc. 3611-SEC(AB) Instrumentation for Agricultural

Month	Topic Topic	Period
25/3/2022- 8/4/2022	Introduction Necessity of agricultural instrument, sensor used in agricultural	2
9/4/2022- 20/4/2022	Soil Properties & Sensing Properties of soil, Permeability and seepage analysis, Mohr's circle of stress, active and passive earth pressures, stability and slopes. Sensors, sonic anemometers, hygrometers, thermocouples, open and close path gas analyzers.	4
21/4/2022- 29/4/2022	Instrumentation in Continuous & Batch process Sugar plant, flow diagram, sensors and instrumentation setup, flow diagram of fermenter and control process, dairy industry flow chart and instrumentation set up for it. Juice extraction control process and instrumentation set up.	3
30/4/2022- 16/5/2022	Instrumentation in Irrigation Auto drip and sprinkler irrigation system, Upstream and downstream control concept, SCADA for DAM parameters and control	4
25/3/2022- 8/4/2022	Greenhouse Parameters & Instrumentation Concept and construction of green house effect, merits and demerits, ventilation, cooling and heating.wind speed, temperature and humidity, soil moisture, rain gauge, CO ₂ control area and wetness, EM radiation, photosynthesis	4

16 periods were used for completion of activity.

Prof. N.D.Barne

F.Y.B.Sc. Physics I (Mechanics and Properties of Matter)- 37 Lectures

Month	Period	Chapter	Topic
October 2021	09	Motion	Introduction to motion,
2021			Types of motion,
			Displacement, Velocity, Acceleration,
			Inertia, Newton's laws of motion with their explanations,
			Various types of forces in
			nature, Frames of reference (Inertial and Non inertial),
			Laws of motion and it's real life applications, Problems
November	07	Work and	Kinetic energy,
2021		Energy	Work Energy Theorem,
			Work done with constant force,
			Work done with varying force (spring force),
			Conservative and Non conservative forces,
			Potential energy, Law of energy conservation,

			Gravitational potential energy,
			Problems
December 2021	08	Fluid Mechanics	Concept of viscous force and viscosity,
			Coefficient of viscosity, Steady and Turbulent flow, Reynolds number,
			Equation of continuity,
			Bernoulli's Principle, Applications of Bernoulli's Principle (Ventury Meter, PitotTube),
			Applications of viscous fluids, Problems.
January 2022	12	Properties of Matter	Surface tension, Angle of contact, Factors affecting surface tension,
			Jaeger's method for determination of surface tension, Applications of surface tension.
			Stress and Strain, Hook's law and Coefficient of elasticity,
			Young's modulus, Bulk modulus, Modulus of rigidity,
			Work done during longitudinal strain, Volume strain, Shearing strain,
			Poisson's ratio, Relation between three elastic moduli, (Y, η, K) ,

	Applications of elasticity,
	Problems

2. T.Y.B.Sc.: PHY 352 Classical Electrodynamics- 39 Lectures

Month	Perio	Chapter	Topic
	d	-	-
October 2021	12	Electrostatics	1.1. Coulomb's law, Gauss law, Electric field, Electrostatic Potential 1.2. Potential energy of system of charges. 1.3. Statement of Poisson's equation, Boundary Value problems in electrostatics-solution of Laplace equation in Cartesian system, 1.4. Method of image charges: Point charge near an infinite grounded conducting plane, Point charge near grounded
			conducting sphere. 1.5. Polarization P, Electric displacement D, Electric susceptibility and dielectric constant, bound volume and surface charge densities. 1.6. Electric field at an exterior and interior point of dielectric.
Novemb er 2021 to	12	Magnetostatics	2.1. Concepts of magnetic induction, magnetic flux and

Decemb			magnetic field
er 2021			2.2. Magnetic induction due to straight current carrying conductor, Energy density in magnetic field, magnetization of matter. Relationship between B,Hand M.
			2.3. Boundary conditions at the interface of two magnetic media (Normal and Tangential component)
			2.4Biot-Savart's law, Ampere's law for force between two current carrying loops, Ampere's circuital law,
			2.5. Equation of continuity, Magnetic vector potential A, Magnetic susceptibility and permeability,
January 2022 to	12	Electrodynami cs	3.1. Day to day applications of electrodynamics
February 2022			3.2. Concept of electromagnetic induction, Faradays law of induction, Lenz's law, displacement current, generalization of Amperes' law
			3.3. Maxwell's equations (Differential and Integral form) and their physical significance
			3.4. Polarization, reflection

& refraction of electromagnetic waves through media
3.5. Wave equation and plane waves in free space.
3.6.Poyntingtheorem&Poynt ing vector, Polarizations of plane wave.

3. T.Y.B.Sc. PHY 353 Classical Mechanics – 30 Lectures

Month	Period	Chapter	Topic	
October 2021	10	Motion of Particles	a. Charged Particles: Motion of a charged particle in constant electric, magnetic and electromagnetic field, b. System of particles: Concept of Centre of mass, Conservation of linear momentum, angular momentum, energy of system of particles.(statements only) c. Problems	
November 2021 to January 2022	10	Central force Field	 a. Central force Field: Definition and Properties of central force field. Reduction of two body problem to an equivalent one body problem b. Motion in central force field, c. Kepler's laws of planetary motion and their proof d. Artificial satellite and its orbit 	

January	10	Scattering	a. Elastic and inelastic
2022 to		of	scattering: Definition and
February		particles	properties,
2022			 b. Elastic scattering - Laboratory and center of mass system. c. Scattering: Scattering angles in laboratory and center of mass system. d. Differential cross-section, impact Parameter, total cross- section in brief. e. Problems

PHY-121 Heat and Thermodynamics

Months	Topic taken	Periods
	1. Fundamentals of Thermodynamics	10
18 Apr. 2022- 26 Apr.	Concept of thermodynamic state, Equation of state, Van der Waal's equation of state, Thermal equilibrium, Zeroth law of thermodynamics, Thermodynamic	
2022	processes: Adiabatic, Isothermal, Isobaric and Isochoric changes, Indicator diagram, Work done during isothermal change, Adiabatic relations, Work done during adiabatic change, Internal energy, Internal energy as state function, First law of thermodynamics, Reversible and Irreversible changes, Problems.	
	2. Applied Thermodynamics	09
27 Apr.	Conversion of heat into work and it's converse, Second	
2022-	law of thermodynamics, Concept of entropy,	
09 May	Temperature - entropy diagram, T-dS equations,	
2022	Clausius - Clapeyron latent heat equations, Problems.	
	Unit Test	

	3. Heat Transfer Mechanisms	09
10 May 2022- 23 May 2022	Carnot's cycle and Carnot's heat engine and its efficiency, Heat Engines: Otto cycle & its efficiency, Diesel cycle & its efficiency, Refrigerators: General principle and coefficient of performance of refrigerator, Simple structure of Vapor compression refrigerator, Air Conditioning: Principle and it's applications, Problems	
17 May 2022	INERNAL EXAM	
24 May 2022- 26 May 2022	4. Thermometry Concept of heat & temperature, Principle of thermometry, Temperature scales & inter-conversions, Principle, Construction and Working: (Liquid thermometers, Liquid filled thermometers, Gas filled thermometers, Bimetallic thermometers, Platinum resistance thermometer, Thermocouple), Problems	08

PHY-365 (A): Electronics-II

Months	Topic taken	Periods
	1: Semiconductor Devices:	09
26 March2022- 11 Apr. 2022	 a. LED and Photodiode, Optocoupler. (Working Principles) Problems. Ref. 1. b. BJT: Transistor amplifier classifications - Class A, B, C and AB (working only), Differential amplifier (transistorized), Problems. Ref. 1. c. Field Effect Transistor: JFET (Introduction, 	

	classification, principle, working and IV characteristics) MOSFETs (DE-MOSFET and E only MOSFET). Problems.	
12Apr.2022- 15 Apr. 2022	2: Applications of Semiconductor Devices: a. Three Pin Regulators: Block diagram of 3-pin IC regulator, study of IC-78XX, 79XX. Dual Power Supply using IC-78XX, 79XX. Ref. 1 b. Switching Regulators (SMPS): Introduction, Block diagram, Advantages and Disadvantages. Ref. 4 c. Modulation and Demodulation: Concept of Carrier Wave, Need of Modulation and Demodulation, Methods of Modulation like AM, FM, PM (Concepts Only), d. Concept of Modulation Index, Upper and Lower Side Band Frequencies in AM. Problems	09
16 Apr. 2022- 21 Apr.2022	3: Integrated Circuits: a. Integrated Circuits: Introduction, Scale of Integration, Advantages and drawbacks of IC Ref.4 b. OP-AMP Applications as Integrator, Differentiator, Comparator. Ref. 1 c. Timer IC-555: Block diagram, Astable, monostable multivibrator (working and design). Problems	09
19 May 2022	INERNAL EXAM	

	4: Combinational and Sequential Circuits:	09
22 Apr.2022-13 May 2022	a. Combinational Circuits: Introduction to SOP and POS equation. Concept of Standard SOP and POS equation. Concept of K-map and their use in reduction of Boolean expressions, design of half adder, full adder, half subtract, Study of binary to gray and gray to binary code conversion. Problems. Ref. 2	
	b. Sequential Circuits: RS flip flop using NAND/NOR, clocked RS, D, JK and T-flip flops. Application of flip flops in Sequential Circuits as Counters and Registers. Asynchronous and Synchronous Counters. (3-bit Counter), Shift Registers and their types of operation -SISO, SIPO, PISO, PIPO (Concepts only).	

PHY-3610 SEC (Z): Calibration Techniques

Months	Topic taken	Periods
	Unit-1: Principles of Calibration	04
26 March 2022-07 Apr. 2022	 Introduction and Importance of Calibration Traceability in Calibration Calibration Uncertainty Various Calibration Methods Factors Affect Calibration Instrument Classification and Instrument Identification 	
	Unit-2: Pressure Calibration	06
08 Apr. 2022-13	 Introduction to pressure calibration Pressure unit conversion standards 	

		T
Apr. 2022	3. Types of Pressure Gauges	
	4. Calibration of Pressure Gauges	
	a. Accuracy	
	b. Pressure Media	
	c. Contamination	
	d. Height Difference	
	e. Leak test of Piping	
	f. Adiabatic Effect	
	g. Torque Force	
	h. Calibration Position	
	i. Generating Pressure	
	j. Pressurizing the Gauge	
	k. Reading the Pressure Value	
	l. Number of Calibration Points	
	m. Hysteresis (deviation of calibration points)	
	n. Number of Calibration cycles	
	5. Instruments required for calibration:	
	a. Pressure comparator	
	b. Master Gauge	
	6. Pressure Calibration with Example	
	Unit-3: Calibration of Electronic Instruments	04
14	1. Identification of Components	
Apr.2022-	2. Equipment required for calibration	
18 Apr.	3. Procedure of Calibration	
2022	a. Read operational Specifications	
	b. Sequence of events	
	c. Identification of common Faults	
	4. Electronic Calibration with Examples	
	(Oscilloscopes, Multimeters, Function Generators,	
	Signal Generators)	
	L	J

23 May 2022	INERNAL EXAM	
19 Apr. 2022-23 Apr. 2022	 Unit-4: Temperature Calibration Temperature units and Conversions Temperature Sensors Calibration of temperature sensors Handling temperature sensor Preparations Temperature sources Reference Temperature Sensor Immersion Depth Stabilization Temperature sensor handle Calibrated temperature range Calibration Points Adjusting/trimming a temperature sensor Examples: 	04

Mrs. Warpe A.R.

Academic Year-2021-22 Syllabus Completion Reportof Semester-I

Name:-Prof. Warpe A.R.

Subjects:-

1] T.Y.B.Sc. :-Renewable Energy Sources

2] S.Y.B.Sc. :-Mathematical Methods In Physics

3] F.Y.B.Sc.:-Practical (Batches-B2,B3,A1,A2)

class:- S.Y.B.Sc

${\bf Sub\ -\!Mathematical\ Methods\ In\ Physics}$

Month	Topic	No. of lectures conducted
	Unit 1: Complex Numbers:	
Dec 2021	,1.1 Introduction to complex numbers 1.2 Rectangular, polar and exponential forms of complex numbers	15
	1.3 Argand diagram	
	1.4 Algebra of complex numbers using Argand diagram	
	1.5 De-Moivre's Theorem (Statement only)	
	1.6 Power, root and log of complex numbers	
	1.7 Trigonometric, hyperbolic and exponential functions	
	1.8 Applications of complex numbers to determine velocity and acceleration in curved motion.	
	1.9 Problems.	
	<u>Unit 2: Partial Differentiation</u>	
	2.1 Definition of partial differentiation	
	2.2 Successive differentiation	
	2.3 Total differentiation	
	2.4 Exact differential	
Jan	2.5 Chain rule	
2022	2.6 Theorems of differentiation	15
	2.7 Change of variables from Cartesian to polar co-ordinates	
	2.8 Conditions for maxima and minima (without proof)	
	2.9 Problems.	

	Unit 3. Vector Algebra and Analysis:	
	3.1 Introduction to scalars and vectors, dot product and cross product of two vectors and their physical significance. (Revision)	
	3.2 Scalar triple product and its geometrical interpretation	
	3.3 Vector triple product and its proof	
	3.4 Scalar and vector fields	
	3.5 Differentiation of vectors with respect to scalar	
	3.6 Vector differential operator and Laplacian operator	
Feb 2022	3.7 Gradient of scalar field and its physical significance3.8 Divergence of scalar field and its physical significance	
	3.9 Curl of vector field and its physical significance.	
	3.10 Vector Identities.	6
	a. $\nabla x (\nabla \Phi) = 0$	
	b. $\nabla \cdot (\nabla x V) = 0$	
	c. $\nabla \cdot (\nabla \Phi) = \nabla 2\Phi$	
	d. $\nabla \cdot (\Phi A) = \nabla \Phi \cdot A + \Phi(\nabla \cdot A)$	
	e. $\nabla x (\Phi A) = \Phi (\nabla x A) + (\nabla \Phi) x A$	
	f. $\nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A(\nabla \times B)$	
	3.11 Problems.	
	Unit 4. Differential Equation:	
	4.1 Degree, order, linearity and homogeneity of differential equation.	
	4.2 Concept of Singular points. Example of singular points ($x = 0$, $x = x0$ and $x = \infty$) of differential equation.	
	4.3 Problems.	

Class:-T.Y.B.Sc.

Subject- Renewable Energy Sources

Month	Торіс	No. of lectures
		conducted
	Unit 1: An Introduction to Energy Sources:	
Dec	1. Energy: Definition, Classifications of energy sources	15
2021	2. Conventional and non-conventional energy sources.	
	3. Sun: The source of energy (Structure, Characteristics and Composition)	
	4. Solar Constant	
	5. Electromagnetic Energy Spectrum.	
	6. Solar radiations outside earth atmosphere.	
	7. Solar radiation at the earth surface.	
	8. Problems.	
	Unit 2: Photothermal Applications:	
	1. Photothermal devices: Solar Insolation, Selective Coating, Glass Cover, Heat Conductor and Heat Insulation.	
	2. Solar water heating systems: Types, construction and working of Liquid Flat Plate Collector (FPC) and Evacuated Tube Collector (ETC)	
	3. Energy Balance Equation (without thermal Analysis).	
	4. Concentrating collectors: Flat plate collector with plane reflector, Cylindrical parabolic, Compound parabolic, Collector with fixed circular concentrators and moving receiver, paraboloid concentrator.	

Jan2022	 Comparative study between flat plate collector and solar concentrators. Solar distillation, Solar dryer, Solar cooker (box type) Unit 3: Photovoltaic systems: Introduction to Photovoltaic effect and Photovoltaic Conversion. Basic photovoltaic system for power generation Basics of Solar Cell, PV modules, Arrays, Solar Cell: I-V characteristics, Power output and conversion efficiency. Factors affecting on photovoltaic efficiency. (Change in amount of input light, solar cell area, Change in angle, Change in operating Temperature etc.) Types of solar cells: p-n junction solar cell, p-i-n diode solar cell, cadmium sulphide solar cell, Gallium arsenide solar cell, Indium phosphide solar cell, nano-crystalline solar cell. Application of solar photovoltaic systems. 	14
Feb 2022	Unit 4: Energy Storage: 1. Importance and Needs of Energy storage in Conventional and Nonconventional Energy Systems. 2. Various forms of Energy Storage 3. Electrical Energy: Super capacitors	7

Academic Year-2021-22 Semester II

Syllabus Completion Report

Name:-Prof. Warpe A.R.

Subjects:-

1] T.Y.B.Sc. :-Lasers

2] F.Y.B.Sc.:-Electricity and Magnetism.

3] F.Y.B.Sc.:-Practical (Batches-B2,B3,A1,A2)

class:- T.Y.B.Sc.

Sub -LASERS

Month	Topic	No. of lectures conducted
	Chapter 1: Introduction to Lasers:	6
April 2022	Brief history of Lasers, Interaction of radiation with matter, Energy levels, Population density, Boltzmann distribution, Stimulated Absorption, Spontaneous Emission and Stimulated Emission, Einstein's Coefficients, Einstein's relations. Characteristics of Laser: Directionality, Mono-chromaticity, Coherence,	
May 2022	Chapter 2: Laser Action: Population inversion, Condition for light amplification, Gain coefficient, Active medium, metastable states. Pumping schemes: three level and four level	20

	Chapter 3: Laser Oscillator:	
	Optical feedback, round trip gain, critical population inversion,	
	Optical resonator, condition for steady state oscillations, cavity	
	resonance frequencies.	
	Chapter 4: Laser Output:	
	Line-shape broadening: Lifetime broadening, Collision	
	broadening	
June	Chapter 5: Types of Lasers:	10
2022	Solid State Lasers – Ruby Laser, Diode Laser, Gas Lasers –	
	HeNe Laser, CO2 Laser	
	Chapter 6: Applications of Lasers:	
	Industrial: welding, cutting, drilling Nuclear Science: laser	
	isotope separation, laser fusion, Medical: eye surgery	

Class:-F.Y.B.Sc.

Subject- Electricity and Magnetism

Month	Topic	No. of lectures
April	Chapter 1. Electrostatics	4
2022	1.1 Revision of Coulomb's law: 1.1.1 Statement 1.1.2 Variation of	

	forces with distances	
	1.2 Superposition principle: 1.2.1 Statement 1.2.2 Explanation with illustration 1.3 Energy of system of charges	
May	Chapter 1. Electrostatics	
2022	1.1 Revision of Coulomb's law: 1.1.1 Statement 1.1.2 Variation of forces with distances	20
	1.2 Superposition principle: 1.2.1 Statement 1.2.2 Explanation with illustration 1.3 Energy of system of charges	
	1.4 Concept of electric field 1.4.1 Due to point charge 1.4.2 Due to group charges	
	1.5 Concept of electric flex	
	1.6 Gauss's law in electrostatics Problems	
	Chapter 2. Dielectrics	
	2.1 Introduction to dielectric materials	
	2.2 Electric Dipole 2.2.1 Electric dipole 2.2.2 Dipole moment	
	2.3 Electric potential and intensity at any point due to dipole	
	2.4 Torque on a dipole placed in an electric field	
	2.5 Polar and non-polar molecules	
	2.6 Electric polarization of dielectric material	
	2.7 Gauss' law in dielectric 2.8 Electric vectors and its relation Problems	
	3. Magnetization	
	3.1 Introduction to Magnetization	
	3.2 Magnetic materials	
	3.3 Types of Magnetic Materials 3.3.1 Diamagnetic materials 3.3.2 Paramgnetic materials 3.3.3 Ferromagnetic materials 3.3.4 Antiferromagnetic materials	

	3.4 Bohr magnetron Problems	
June	4. Magnetostatics	8
2022	4.1 Introduction to magnetization,	
	4.2 Magnetic Induction and Intensity of magnetization	
	4.3 Biot-Savart's law: 4.3.1 Statement 4.3.2 Long straight conductor 4.3.3 Circular Coil 4.4 Ampere's circuital law: 4.4.1 Statement 4.4.2 Field of Solenoid 4.4.3 Field of Toroid 4.5 Gauss law for magnetism Problems	
	5. Magnetic Properties of Materials	
	5.1 Definition 5.1.1 Magnetization (M), 5.1.2 Magnetic Intensity (H), 5.1.3 Magnetic Induction (B), 5.1.4 Magnetic Susceptibility 5.1.5 Magnetic Permeability	
	5.2 Relation between B, M and H	
	5.3 Hysteresis and Hysteresis Curve 5.4 Ferrite materials and its Applications Problem	

1) F.Y.B.Sc.:- Practicals of Semester -1 and 2 completed in Academic Year 2021-2022.