Dr. V.D.Kulkarni, Dept of Physics HutatmaRajguruMahavidyalaya, Rajgurunagar (Pune)

Teaching Plan

(2023-24)

T.Y.B.Sc. PH 333 Classical Mechanics

Sr. No.	Topics	Month
01	1. Motion of system of a particles Introduction –Newton's laws	
02	Motion of a charged particle in constant electric, magnetic and electromagnetic field	
03	General features of motion, equation of orbit, Deduction of Kepler's laws of planetary motion,	July and Augus-2023
	Orbits of artificial satellite, Problems	
04	System of particles, Centre of mass, Conservation of linear momentum, angular momentum, Energy of system of particles (statements only) Problems	
09	2. Motion in Central Force Field	
	Central force, equivalent one body problem	
10	Motion in central force field	August-2023
11	General features of motion, equation of orbit	
12	Deduction of Kepler's laws of planetary motion	
	Orbits of artificial satellite and Problems	
13	4.Langrangian and Hamiltonian Formulation	
	Introduction	Sept2023

14	Newton's laws, constraints, Holonomic and nonholonomic constraints, Principle of virtual work, D'Alembert's Principle	
15	Langrange's equation from D'Alembert's Principle	
	Simple Pendulum, Linear Harmonic Oscillator	
16	Hamiltonian and Hamilton's equation	
17	Problems of Hamiltonian	
18	Problems of Langrange's method	
19	Problems of Hamiltonian method	
20	3.Scattering of Particles	
	Elastic and inelastic scattering	
21	Properties of Elastic and inelastic scattering	
22	Relation between lab and CM Frame	Sept2023
	Relation of angles between lab and CM Frame	
23	Inelastic scattering, Differential cross section, impact parameter ,Total differential cross section	
24	Relation of scattering angles between lab and CM Frame, problems	

T.Y.B.Sc. PH 335: Computational Physics

Sr. No.	Topics	Month
01	1.Concepts of programming and Introduction to C	
	Programming	Sept2023
	Definition and Properties of algorithms,	
	Algorithm development,	
02	Algorithm development,	
	Flow charts- symbols and simple flowcharts	
03	Flow charts and Algorithms for Kinematic equations, Free	

	fall, Equation of state, Factorial of a	
	number.	
04	Types of programming language: Lower, middle and higher level languages.	
05	Structure of C program, Character set, key words,	
06	Constants andvariables, Variable names,	
07	Data types and their declarations, Symbolic Constants.	
08	Input/output functions: scanf (), printf (), getchar (), putchar (), getch (), gets (), puts ().	
09	Operators and Expressions: Arithmetic Operators, Relational Operators, LogicalOperators,	
10	Assignment Operators, Conditional Operator. Formatted input/output	
11	Control statements: If, if else, while, do while for loop, nested control structures	
12	(Nested if, nested loops), break, continue, switch- case statement, goto statement.	
13	Use of Library functions: e.g. mathematical, trigonometric, graphics.	
14	2. Arrays, Pointers and user defined functions Arrays: 1-D, 2-D and String	Oct2023
15	Examples: Arranging numbers in descending and ascending order,	Oct. 2023
16	Sum of matrices, multiplication of matrices.	
17	Concept of Pointers	
18	User defined functions: Definitions and declaration of function, function prototype.	
19	Passing arguments (Call by value, Call by reference).	
20	Storage Classes: Auto, External, Static, Register variables.	
21	3. Graphics in C:	
	Some simple graphic commands	

	- Line, Circle, Arc, Ellipse, Bar., Problems	
22	4. Computational Physics:	
23	Iterative methods: Discussion of algorithm and flowcharts and writing C programs for finding	Oct2023
24	single root of equation using bi-section method, NewtonRaphson method.	
25	Discussion of algorithm and flowcharts and writing C program for trapezoidal rule and Simpson's 1/3rd rule	

Thermodynamics and Statistical Physics (PH-363)

Sr. No.	Topics	Month
01	Ch-1 - Kinetic Theory of gases	
	Mean Free Path Theory of gases	
02	Transport Phenomena, Viscosity	
03	Thermal conductivity and diffusion	Dec 2023
04	Thermodynamic functions	
05	Enthalpy, Entropy, Internal Energy, Helmholtz Functions	
06	Maxwell's relations	
07	First and Second TdS equations	
	Specific and Latent heat equations	
08	Joule – Thomson's effect,	
	Problems	
09	Ch-2- Elementary Concepts of Statistics	
	Probability ,Distributions functions,Problems	
10	Random Walk Problem and	
	Bionomial distribution	Jan2024
11	Simple Random Problem, Calculation of mean Values	
12	Probability distribution for large N	
13	Gaussian Probability distribution	
	and Problems	
14	Ch-3- Statistical distribution of system of particles and	
	Ensembles	
	State of Systems, Statistical Ensembles	

15	Basic Postulates,	
	Probability Calculations	Jan2024
16	Behavior of density of states	
17	Thermal. Mechanical Interactions,	
	Problems	
18		
	Micro canonical Ensembles, Canonical Ensembles	
19	Applications of Canonical Ensembles	
20	Molecules in ideal gas, Mean Values in Canonical Ensembles,	
	Problems	
21	Ch-4-Introduction to Quantum States	
	Quantum distribution function	
22	Maxwell – Boltzman Statistics,	Feb2024
	Bose – Einstein Statistics	
23	Fermi – Dirac Statistics	
24	Comparisions of B-E,M-B,F-D Statisctics , Applications of	
	Quantum Statstics	
25	Problems	
26	Internal Test	

LASERS (PH-366)

Sr. No.	Topics	Month
01	Chapter 1: Introduction to Lasers:	
	Brief history of Lasers, Interaction of radiation with matter, Energy levels, Population density, Boltzmann distribution, Stimulated Absorption, Spontaneous Emission and Stimulated Emission, Einstein's Coefficients, Einstein's relations. Characteristics of Laser: Directionality, Mono-chromaticity, Coherence,	March -2024
02	Chapter 2: Laser Action:	
02	Chapter 2. Easer rection.	March -2024
	Population inversion, Condition for light amplification, Gain	
	coefficient, Active medium, metastable states. Pumping	
	schemes: three level and four level	
03	Chapter 3: Laser Oscillator:	March -2024

	Optical feedback, round trip gain, critical population	
	inversion, Optical resonator, condition for steady state	
	oscillations, cavity resonance frequencies.	
04	Chapter 4: Laser Output:	March -2024
	Line-shape broadening: Lifetime broadening, Collision	
	broadening	
05	Chapter 5: Types of Lasers:	April-2024
	Solid State Lasers – Ruby Laser, Diode Laser, Gas Lasers –	
	HeNe Laser, CO2 Laser	
06	Chapter 6: Applications of Lasers:	April-2024
	Industrial: welding, cutting, drilling Nuclear Science: laser	
07	isotope separation, laser fusion, Medical: eye surgery	
07	Internal Test	

T.Y.B.Sc. Physics (Sem V) Year: 2023-2024 PHY-351: Mathematical Methods in Physics-II Teacher: A.B.Kanawade

Chapter No.	Month	Contents	Remarks
1		1: Curvilinear Co-ordinates	
	Aug 2023	Review of Cartesian, spherical and cylindrical co- ordinate,	
		transformation equation, General Curvilinear co- ordinate system:	

		Co-ordinate surface, co-ordinate lines, length, surfaces and volume elements in curvilinear co-ordinate system. Orthogonal curvilinear co-ordinate system, expressions for gradient, divergence, Laplacian, and curl, special case for gradient, divergence and curl in Cartesian, spherical polar and cylindrical co-ordinate system, Problems.	
2	Oct 2023	2: The Special Theory of Relativity Introduction, Newtonian relativity, Galilean transformation equation, Michelson-Morley experiment, Postulates of special theory of relativity, Lorentz transformations, Lorentz transformations, Kinematic effects of Lorentz transformation, Length contraction, Proper time, Problems.	
3	Aug/ Sep 2023	3: Partial Differential Equations Introduction to Partial differential equations (PDE), General methods for solving second order PDE, Method of separation of variables in Cartesian,	

		Spherical polar and cylindrical co-ordinate system (two dimensional Laplace's equation, one dimensional Wave equation),	
		Singular points (x = x ₀), Solution of differential equation-Statement of Fuch's theorem, Frobenius method of series solution.	
4		4: Special Functions	
	Sep/ Oct 2023	Introduction, generating function for Legendre Polynomials: Pn(x), Properties of Legendre Polynomials, Generating function for Hermite Polynomials: Hn(x), Properties of Hermite Polynomials,	
		Bessel function of first kind: Jn (x), Bessel function of first kind: Jn (x), Properties of Bessel function of first kind, Problems.	

Year: 2023-2024

Teacher: A.B.Kanawade

T.Y.B.Sc. Physics (Sem V)
PHY-356(D): Renewable Energy Sources

Chapter No.	Month	Contents	Remarks
1.	Sep/ Oct 2023	1: An Introduction to Energy Sources: (10L) 1. Energy: Definition, Classifications of energy sources 2. Conventional and non-conventional energy sources. 3. Sun: The source of energy (Structure,	

		Characteristics and Composition)	
		4. Solar Constant	
		5. Electromagnetic Energy Spectrum.	
		6. Solar radiations outside earth atmosphere.	
		7. Solar radiation at the earth surface.	
		8. Problems.	
2.	Oct 2023	2: Photothermal Applications: (10L)	
	2023	1. Photothermal devices: Solar Insolation, Selective Coating, Glass Cover, Heat Conductor and Heat Insulation.	
		2. Solar water heating systems: Types, construction and working of Liquid Flat Plate Collector (FPC) and Evacuated Tube Collector (ETC)	
		3. Energy Balance Equation (without thermal Analysis).	
		4. Concentrating collectors: Flat plate collector with plane reflector, Cylindrical parabolic, Compound parabolic, Collector with fixed circular concentrators and moving receiver, paraboloid concentrator.	
		5. Comparative study between flat plate collector and solar concentrators.	
3.		6. Solar distillation, Solar dryer, Solar cooker (box type)	
	Oct/	3: Photovoltaic systems: (10L)	
	Nov 2023	1. Introduction to Photovoltaic effect and Photovoltaic Conversion.	
		2. Basic photovoltaic system for power generation	
		3. Basics of Solar Cell, PV modules, Arrays,	
		4. Solar Cell: I-V characteristics, Power output and conversion efficiency.	
		5. Factors affecting on photovoltaic efficiency. (Change in amount of input light, solar cell area, Change in angle, Change in operating Temperature etc.)	
		6. Types of solar cells: p-n junction solar cell, p-i-n	

		diode solar cell, cadmium sulphide solar cell, Gallium arsenide solar cell, Indium phosphide solar cell, nanocrystalline solar cell.
		7. Application of solar photovoltaic systems.
4.	Nov 2023	4: Energy Storage: (06L)
		Importance and Needs of Energy storage in Conventional and Nonconventional Energy Systems.
		2. Various forms of Energy Storage
		3. Electrical Energy: Super capacitors
		4. Electrochemical Energy: Battery
		5. Chemical Energy: Hydrogen Production and storage

S.Y.B.Sc. (Physics) (Sem III) PHY-232(A): Electronics-I Year: 2023-2024 Teacher: A.B.Kanawade

Chapter No.	Month	Contents	Remarks
1.	Jul/ Aug 2023	1. Network Theorem: 1.1 Krichhoff's Law 1.2 Voltage and current Divider Circuit	
		1.3 Thevenin's Theorem	

	1		1
		1.4 Norton's Theorem	
		1.5 Superposition Theorem	
		1.6 Maximum Power transfer theorem (With proof) 1.7 Problems	
2.	Aug	2. Study of Transistor 2.1 Bijunction Transistor	
	2023	Revision of bipolar Junction Transistor, Types, Symbol and basic action.	
		2. Configuration (Common Base, Common Emitter and Common Collector)	
		3. Current Gain Factors (α and β) and their relations	
		4. Input, Output and transfer Characteristic of CE Configuration	
		5. Biasing method and Voltage Divider	
		6. DC Load line (CE), Operating Point (Q-point)	
		7. Transistor as a switch 8. Problems	
		2.2 Uniunction Transistor:	
		1. Symbol, Types, Construction, Working Principle, I-V characteristics, Specifications and parameters of Unijunction Transistor (UJT)	
		2. UJT as a relaxation Oscillator.	
3.	Sep/ Oct	3.Operational Amplifiers and Application 3.1 Operational Amplifiers: 1. Introduction 2. Ideal and practical Characteristics	
	2023	3. Operational Amplifier: IC741-Block Diagram	
		and Pin diagram 4. Concept of Virtual Ground	
		5. Inverting and Non-inverting operational amplifiers with concept of gain	
		6. Operational amplifier as an adder and subtractor	

T.Y.B.Sc. Physics (Sem VI)
PHY-361: Solid State Physics
Year: 2023-2024
Teacher: A.B.Kanawade

Chapter	Month	Contents	Remarks
No.			
1		1: The Crystalline Structures (10 L)	
	Jan2024	Lattice, Basis,	
		Translational Vectors,	
		Primitive Unit Cell, Symmetry Operations,	
		Different types of lattices: 2D and 3D (Bravais lattices)	
		Miller indices, Inter Planer Distances,	
		SC, BCC and FCC structures, Packing Fraction,	
		Crystal structures NaCl, diamond, CsCl,	

		ZnS, HCP,	
		Concept of Reciprocal Lattice and its properties,	
		Problems	
2		2: X ray Diffraction and Experimental Methods (9 L)	
_	Jan 2024	Bragg's Diffraction,	
		Bragg's Law,	
		Experimental X-ray diffraction Methods: The Laue Method,	
		Bragg's Spectrometer,	
		The Powder Crystal Method,	
		Analysis of cubic structure by Powder Method,	
		Ewald's Construction,	
		Bragg's Diffraction condition in direct and reciprocal lattice,	
		Problems	
3		3: Free Electron and Band Theory of Metals (9L)	
	Mar 2024	Assumptions of Classical and Somerfield Free Electron model,	
		Energy levels and Density of States (One and Three	
		Dimensions),	
		Nearly free electron model,	
		Fermi energy, Fermi level,	
		Hall Effect, Mobility, Hall Angle	
		Band Theory of Solids: Origin of energy gap, Energy bands in	
		Solids, Distinction between metal, semiconductor and	
		insulator,	
		Problems	
4	Mar/Apr	4: Magnetism (8L)	
	2024	Diamagnetism, Langevin theory of Diamagnetism,	
	2024	Paramagnetism,	
		Langevin theory of Paramagnetism,	
		Ferromagnetism, Antiferromagnetism, Ferromagnetic	
		Domains,	
		Hysteresis, Curie temperature, Neel temperature,	
		Superconductivity, Problems	
L		Superconductivity, 1 tooleins	

Year: 2023-2024

Teacher: A.B.Kanawade

T.Y.B.Sc. Physics (Sem VI) PHY-362: Quantum Mechanics

Chapter No.	Month	Contents	Remarks
1	Jan 2024	Origin of Quantum Mechanics: (08 L) 1. Historical Background: Review of Black body radiation, photoelectric effect 2. Matter waves - De Broglie hypothesis Davisson and Germer experiment. 3. Wave particle duality 4. Concept of wave function, wave packet, phase velocity, group velocity and relation between them	

		5. Heisenberg's uncertainty principle with Electron diffraction	
		experiment, different forms of uncertainty. Problems	
2	F 1 2024	The Schrodinger equation: (10 L)	
	Feb 2024	1. Physical interpretation of Wave function	
		2. Schrodinger time dependent equation.	
		3. Schrodinger time independent equation (Steady state equation).	
		4. Requirements of wave function.	
		5. Probability current density, equation of continuity and its physical	
		significance.	
		6. An operator in Quantum mechanics Eigen function and Eigen	
		values.	
		7. Expectation value – Ehrenfest's theorem(omly statements),	
		Problems	
3		Applications of Schrodinger Steady state equation: (14 L)	
	Feb/Mar	1. Free particle.	
	2024	2. Step Potential	
		3. Potential barrier(Qualitative discussion), Barrier potential and	
		tunneling effect.	
		4. Particle in infinitely deep potential well (one - dimension).	
		5. Schroedinger equation in spherical polar coordinate system	
		6. Rigid rotator (Free axis) 7. Problems	
5		Operators in Quantum Mechanics: (04 L)	
	Mar/Apr	1. Hermitian operator.	
	2024	2. Position, Momentum operator, angular momentum operator, and	
		total energy operator (Hamiltonian).	
		3. Commutator brackets- Simultaneous Eigen functions.	
		4. Commutator algebra.	
		5. Commutator brackets using position, momentum and angular	
		momentum operator.	
		6. Concept of parity according to quantum mechanics, parity operator	
		and its Eigen values.	
		7. Applications of operators in quantum mechanics	
		8. Problems	

Year: 2023-2024

Teacher: A.B.Kanawade

S.Y.B.Sc. Physics (Sem IV) PHY-242: Optics

Chapter	Month	Contents	Remarks
No.			
1	Jan/Feb	1. Geometrical optics: (08L)	
	2024	1.1 Introduction to lenses and sign conventions.	
		1.2 Thin lenses: Lens equation for convex lens	
		1.3 Lens maker equation	
		1.4 Concept of magnification, deviation and power of a thin lens	
		1.5 Equivalent focal length of two thin lenses	
		1.6 Concept of cardinal points	
		1.7 Problems	
2	Mar 2024	2. Lens Aberrations: (08L)	

		2.1 Introduction
		2.2 Types of aberrations: Monochromatic and Chromatic
		2.3 Types of Monochromatic Aberrations and their Reductions
		2.4 Types of Chromatic Aberrations
		2.5 Achromatism: Lenses in Contact and Separated by a finite
		Distance
		2.6 Problems
3	Mar/Apr	3. Optical Instruments: (06L)
	2024	3.1 Introduction
		3.2 Simple Microscope
		3.3 Compound Microscope
		3.4 Ramsden's eye piece
		3.5 Huygens eye piece
		3.6 Problems.
4		4. Interference and Diffraction: (08L)
	Apr 2024	4.1 Introduction
		4.2 Phase change on reflection (Stokes treatment)
		4.3 Interference due to Wedge shaped thin film
		4.4 Newton's ring
		4.5 Diffraction Types:Fresnel's Diffraction and Fraunhoffer's
		Diffraction
		4.6 Fraunhoffer's diffraction at a single slit
		4.7 Plane Diffraction grating, Rayleigh criterion for resolution
		4.8 Problems
5		4. Polarization: (6L)
	Apr 2024	5.1 Introduction to polarization
		5.2 Brewster's law
		5.3 Law of Malus
		5.4 Polarization by double refraction
		5.5 Nicol Prism
		5.6 Problems
		J.O FTOOICHIS

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR Tal-Khed, Dist-Pune 410 505 DEPARTMENT OF PHYSICS

Teaching Plan
Academic Year-2023-2024
Sem- I

F.Y.B.Sc. CBCS Pattern

Name: Mr. Barne N.D. PHY-111 Mechanics and Properties of Matter

Sr. No.	Months	Topics	Lectures
		1. Motion:	09
01	Third week of	Introduction to motion, Types of motion, Displacement,	
	July 2023	Velocity, Acceleration, Inertia, Newton's laws of motion	
	- -	with their explanations, Various types of forces in nature,	
	Second week	Frames of reference (Inertial and Non inertial), Laws of	
	of Aug. 2023	motion and it's real life applications, Problems	07
		2. Work and Energy:	07
02	Third week of	Kinetic energy, Work Energy Theorem, Work done with	
02	Aug. 2023	constant force, Work done with varying force (spring force), Conservative and Non conservative forces,	
	Aug. 2023	Potential energy, Law of energy conservation,	
	Second week	Gravitational potential energy, Problems	
	of Sept. 2023	Gravitational potential energy, 1 foolens	
	от верт. 2023	3. Fluid Mechanics:	08
		Concept of viscous force and viscosity, Coefficient of	00
03	Third week of	viscosity, Steady and Turbulent flow, Reynolds number,	
00	Sept. 2023	Equation of continuity, Bernoulli's Principle,	
	-	Applications of Bernoulli's Principle (Ventury Meter,	
	Second week Oct. 2023	PitotTube), Applications of viscous fluids, Problems.	
		4. Properties of Matter:	12
		Surface tension, Angle of contact, Factors affecting	
04	Third week of	surface tension, Jaeger's method for determination of	
	Oct.2023	surface tension, Applications of surface tension.	
	-	Stress and Strain, Hook's law and Coefficient of	
	First week of	elasticity, Young's modulus, Bulk modulus, Modulus of	
	Nov. 2023	rigidity, Work done during longitudinal strain, Volume strain, Shearing strain.	
		Stum, Shouring Stum.	

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR Tal-Khed, Dist-Pune 410 505

DEPARTMENT OF PHYSICS

Teaching Plan Academic Year-2023-2024 Sem- V

T.Y.B.Sc.

Name: Mr. Barne N.D. Subject: PH-352 Electrodynamics

Months	Topics	Lectures
	•	12
Third week of	1. Electrostatics:	
Aug. 2023-	1.1. Coulomb's law, Gauss law, Electric field,	
First week of	Electrostatic Potential	
Sept. 2023	1.2. Potential energy of system of charges.	
	1.3. Statement of Poisson's equation, Boundary Value	
	problems in electrostatics-solution of Laplace equation in	
	Cartesian system,	
	1.4. Method of image charges: Point charge near an	
	infinite grounded conducting plane, Point charge near	
	grounded conducting sphere.	
	1.5. Polarization P, Electric displacement D, Electric	
	susceptibility and dielectric constant, bound volume and	
	surface charge densities.	
	1.6. Electric field at an exterior and interior point of	
	dielectric.	
	2.Magnetostatics:	12
First week of	2.1. Concepts of magnetic induction, magnetic flux and	
Sept. 2023-	magnetic field	
First week of	2.2. Magnetic induction due to straight current carrying	
Oct. 2023	conductor, Energy density in magnetic field,	
	magnetization of matter. Relationship between B,H and	
	M.	
	2.3 Biot-Savart's law, Ampere's law for force between	
	two current carrying loops, Ampere's circuital law,	
	2.4Equation of continuity, Magnetic vector potential A.	
	2.5. Magnetic susceptibility and permeability, Hysteresis	

	loss, B-H curve.		
	3. Electrodynamics:	12	
First week of	3.1.Concept of electromagnetic induction, Faradays law of		
Oct. 2023 –	3 – induction, Lenz's law, displacement current,		
First week of	generalization of Amperes' law		
Nov. 2023	3.2. Maxwell's equations (Differential and Integral form)		
	and their physical significance		
	3.3. Polarization, reflection & refraction of		
	electromagnetic waves through media		
	3.4. Wave equation and plane waves in free space.		
	3.5. Poynting theorem & Poynting vector, Polarizations of		
	plane wave.		
	3.6. Microscopic form of ohm's law (J=σ.E)		

Mr. Barne N. D.

K.T.S.P. Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, RAJGURUNAGAR Tal-Khed, Dist-Pune 410 505

DEPARTMENT OF PHYSICS

Teaching Plan
Academic Year-2023-2024
Sem- III

S.Y.B.Sc.

Name: Mr. Barne N.D. Subject: PHY 231 MMP-I

Months	Topics	Lectures
		09
Third week of	1. Complex Numbers:	
Aug. 2023-	1.1 Introduction to complex numbers 1.2 Rectangular,	
First week of	polar and exponential forms of complex numbers 1.3	
Sept. 2023	Argand diagram 1.4 Algebra of complex numbers using	
	Argand diagram 1.5 De-Moivre's Theorem (Statement	
	only) 1.6 Power, root and log of complex numbers 1.7	
	Trigonometric, hyperbolic and exponential functions 1.8	
	Applications of complex numbers to determine velocity	
	and acceleration in curved motion. 1.9 Problems.	
	2. Partial Differentiation:	09
First week of	2.1 Definition of partial differentiation 2.2 Successive	
Sept. 2023-	differentiation 2.3 Total differentiation 2.4 Exact	
First week of	differential 2.5 Chain rule 2.6 Theorems of differentiation	
Oct. 2023	2.7 Change of variables from Cartesian to polar co-	
	ordinates 2.8 Conditions for maxima and minima (without	
	proof) 2.9 Problems	
	3. Vector Algebra and Analysis:	12
First week of	3.1 Introduction to scalars and vectors, dot product and	

T					
Oct. 2023 -	cross product of two vectors and their physical				
Second week	significance. (Revision) 3.2 Scalar triple product and its				
of Oct. 2023	geometrical interpretation 3.3 Vector triple product and its				
	proof 3.4 Scalar and vector fields 3.5 Differentiation of				
	vectors with respect to scalar 3.6 Vector differential				
	operator and Laplacian operator 3.7 Gradient of scalar				
	field and its physical significance 3.8 Divergence of scalar				
	field and its physical significance 3.9 Curl of vector field				
	and its physical significance.				
	3.10 Vector Identities. a. $\nabla \times (\nabla \Phi) = 0$ b. $\nabla \cdot (\nabla \times V) = 0$ c.				
	$\nabla \cdot (\nabla \Phi) = \nabla \cdot 2\Phi d. \nabla \cdot (\Phi A) = \nabla \Phi \cdot A + \Phi(\nabla \cdot A) e. \nabla \cdot x (\Phi A) = \Phi$				
	$(\nabla \times A) + (\nabla \Phi) \times A \text{ f. } \nabla \cdot (A \times B) = B \cdot (\nabla \times A) - A(\nabla \times B)$				
	3.11 Problems.				
Third week of	4. Differential Equation:	06			
Oct. 2023-	4.1 Degree, order, linearity and homogeneity of				
First week of	differential equation. 4.2 Concept of Singular points.				
Nov. 2023	Example of singular points $(x = 0, x = x0 \text{ and } x = \infty)$ of				
	differential equation. 4.3 Problems.				

Mr. Barne N. D.

KTSP Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, Rajgurunagar

Teaching Plan

Academic Year- 2023-24

DEPARTMENT OF PHYSICS

SEM II

F.Y.B.Sc.

Name: Mr. Barne N.D. PHY-121 Heat and Thermodynamics

Months	Topic taken	Periods
	1. Fundamentals of Thermodynamics	10
First week	Concept of thermodynamic state, Equation of state, Van	
of	der Waal's equation of state, Thermal equilibrium, Zeroth	
Dec.2023-	law of thermodynamics, Thermodynamic processes:	
Fourth	Adiabatic, Isothermal, Isobaric and Isochoric changes,	
week of	Indicator diagram, Work done during isothermal change,	
Dec. 2023	Adiabatic relations, Work done during adiabatic change,	
	Internal energy, Internal energy as state function, First law	
	of thermodynamics, Reversible and Irreversible changes,	
	Problems.	
	2. Applied Thermodynamics	09
First week	Conversion of heat into work and it's converse, Second	
of Jan.	law of thermodynamics, Concept of entropy, Temperature -	
2024-	entropy diagram, T-dS equations, Clausius - Clapeyron	
Fourth	latent heat equations, Problems.	
week of		
Feb. 2024		
	Unit Test	
	3. Heat Transfer Mechanisms	09
First week	Carnot's cycle and Carnot's heat engine and its efficiency,	
of March	Heat Engines: Otto cycle & its efficiency, Diesel cycle &	
2024-	its efficiency, Refrigerators: General principle and	
Second	coefficient of performance of refrigerator, Simple structure	
week of	of Vapor compression refrigerator, Air Conditioning:	

March 2024	Principle and it's applications, Problems	
	INERNAL EXAM	
Second week of March 2024- Third week of March 2024	4. Thermometry Concept of heat & temperature, Principle of thermometry, Temperature scales & inter-conversions, Principle, Construction and Working: (Liquid thermometers, Liquid filled thermometers, Gas filled thermometers, Bimetallic thermometers, Platinum resistance thermometer, Thermocouple), Problems	08

Mr. Barne N. D.

KTSP Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, Rajgurunagar

Teaching Plan

2023-2024

DEPARTMENT OF PHYSICS

SEM VI

T.Y.B.Sc.

Name: Mr. Barne N.D. PHY-365 (A): Electronics-II

Months	Topic taken	Periods
First week of Jan 2024- Fourth week of Jan2024	1: Semiconductor Devices: a. LED and Photodiode, Optocoupler. (Working Principles) Problems. Ref. 1. b. BJT: Transistor amplifier classifications - Class A, B, C and AB (working only), Differential amplifier (transistorized), Problems. Ref. 1. c. Field Effect Transistor: JFET (Introduction, classification, principle, working and IV characteristics) MOSFETs (DE-MOSFET and E only MOSFET). Problems.	09
First week of Feb. 2024- Fourth week of Feb. 2024	2: Applications of Semiconductor Devices: a. Three Pin Regulators: Block diagram of 3-pin IC regulator, study of IC-78XX, 79XX. Dual Power Supply using IC-78XX, 79XX. Ref. 1 b. Switching Regulators (SMPS): Introduction, Block diagram, Advantages and Disadvantages. Ref. 4 c. Modulation and Demodulation: Concept of Carrier Wave, Need of Modulation and Demodulation, Methods of Modulation like AM, FM, PM (Concepts Only), d. Concept of Modulation Index, Upper and Lower Side Band Frequencies in AM. Problems	09
First week	3: Integrated Circuits: a. Integrated Circuits: Introduction, Scale of Integration, Advantages	09

of March 2024- Second week of March 2024	and drawbacks of IC Ref.4 b. OP-AMP Applications as Integrator, Differentiator, Comparator. Ref. 1 c. Timer IC-555: Block diagram, Astable, monostable multivibrator (working and design). Problems	
	INERNAL EXAM	
Fourth week of March 2024- First week of April 2024	4: Combinational and Sequential Circuits: a. Combinational Circuits: Introduction to SOP and POS equation. Concept of Standard SOP and POS equation. Concept of K-map and their use in reduction of Boolean expressions, design of half adder, full adder, half subtract, Study of binary to gray and gray to binary code conversion. Problems. Ref. 2 b. Sequential Circuits: RS flip flop using NAND/NOR, clocked RS, D, JK and T-flip flops. Application of flip flops in Sequential Circuits as Counters and Registers. Asynchronous and Synchronous Counters. (3-bit Counter), Shift Registers and their types of operation -SISO, SIPO, PISO, PIPO (Concepts only).	09

Mr. Barne N. D.

KTSP Mandal's

HUTATMA RAJGURU MAHAVIDYALAYA, Rajgurunagar

Teaching Plan

2023-2024

DEPARTMENT OF PHYSICS

SEM VI

T.Y.B.Sc.

Name: Mr. Barne N.D. PHY-3610 SEC (Z): Calibration Techniques

Months	Topic taken	Periods
Second week of Feb. 2024 – Fourth week of Feb. 2024	 Unit-3: Calibration of Electronic Instruments Identification of Components Equipment required for calibration Procedure of Calibration Read operational Specifications Sequence of events Identification of common Faults Electronic Calibration with Examples (Oscilloscopes, Multimeters, Function Generators, Signal Generators) 	04
	INERNAL EXAM	

F 41 1	Unit-4: Temperature Calibration	04
Fourth week	1. Temperature units and Conversions	
of March	2. Temperature Sensors	
2024-	3. Calibration of temperature sensors	
First week	a. Handling temperature sensor	
of Apr. 2024	b. Preparations	
2024	c. Temperature sources	
	d. Reference Temperature Sensor	
	e. Immersion Depth	
	f. Stabilization	
	g. Temperature sensor handle	
	h. Calibrated temperature range	
	i. Calibration Points	
	j. Adjusting/trimming a temperature sensor	
	4. Examples:	
	7. Examples.	
	Activity:	18
First week	1. RTD calibration check	
of Jan 2024	2. Calibration of digital balance	
_	3. Calibration of PH/Conductivity meter	
Fourth week	4. Calibration of Volt meter	
of Jan 2024	5. Calibration of Current meter	
	6. Calibration of Oscilloscopes	
	o. Canoration of Osemoscopes	

Barne N.D.