
 K.T.S.P. MANDAL'S

HUTUTMA RAJGURU MAHAVIDYALAYA,

RAJGURUNAGAR TAL-KHED, DIST-PUNE 410 505

DEPARTMENT OF COMPUTER SCIENCE

F.Y.Bsc (Computer Science)

 Semester- II

 Software Testing

 Subject – CS-362 -Software Testing

 According to New Syllabus w.e.f. 2021-2022

 Prof. Pallavi G. Darakhe

DEPARTMENT OF COMPUTER SCIENCE

 Chapter 1st

 Introduction to Software Testing

Software Testing is a method to assess the functionality of the

software program. The process checks whether the actual software

matches the expected requirements and ensures the software is bug-

free. The purpose of software testing is to identify the errors, faults,

or missing requirements in contrast to actual requirements. It mainly

aims at measuring the specification, functionality, and performance

of a software program or application

In software testing, we commonly use the term defect, bug, error, and

failure to represent various scenarios in the testing process.

Basics of Software Testing- Faults, Errors and

Failures

A Defect is a deviation from the expected behaviour in a software

application, and it arises due to flaws in the code or design. In

other words, a defect is a potential issue identified during testing.

We often use the term “bug” interchangeably with the defect. While

a defect is a more formal term used in the testing domain, a bug

has become a usual way of referring to defects.

An Error is a mistake a coder makes during the software

development process. It occurs when a programmer or developer

introduces a flaw in the code or logic, leading to unintended results

when the software is executed. Errors are human-made and are a

natural part of the software development process. These mistakes can

be Syntax errors, logical errors, or other issues that affect the

functionality of the software.

A Failure is when the software doesn’t have an intended

functionality or deliver the expected results during

execution. Defects and errors have the potential to cause failures

during software execution. When the software behaves unexpectedly

or incorrectly while used by end-users, we consider it a failure.

We can see that defects (i.e., bugs) and errors can lead to failures, and

errors can contribute to defects in the software development and

testing process.

Benefits of Software Testing

1.Cost Effective

If an application works without any fault and with low maintenance

will save a big amount for the owner.

• Software testing helps in early defect detection and fixing

them to make a more successful and good return

application.

• Every application demands maintenance and the application

owner spends a good amount to maintain the working and

functionality of the application.

• By testing an application, the maintenance area reduces too

many folds and hence saves money.

• Software testing helps in saving the money of the

developing organization by detecting defects in the early

stages of the software which becomes easy and economical

for the developer to redesign the module instead of detecting

bugs after the complete development of the software.

2.Security

The main concern of the digital world is Security. A secure system

always remains on the priority list of customers. Owners pay

multiple dollars to make their systems secure from hackers,

malicious attacks, and other thefts. Security testing technique is used

to identify the security level of the application and testers try to find

loopholes to break the security of an application.

• In the case of bank applications, security is the foremost

requirement as it deals with customer money, and bank

applications always remain on top of the thefts.

• The testing team uses security testing to identify defects and

the development team tries to cover the application with

multiple security layers.

• Thus, software testing is a must to maintain the security of

an application.

 3. Quality Product

The main focus of software testing is to deliver a quality product to

its clients which results in a satisfied client. The quality of a product

can only be maintained when it is bug-free and meet all the user

requirements.

• To meet the product qualities, if an application works with

other related applications then it must undergo compatibility

testing.

• During software testing, an application undergoes several

testing techniques to make a quality end product and the

testing team tries their best by writing test cases and test

scenarios to validate defect-free free applications.

4.Customer Satisfaction

The prime goal of any service-based organization is to serve the best

features and experience to their customers, customer satisfaction is

the only goal for the success and popularity of an application.

• Software testing helps in building the trust and satisfaction

of the customer by assuring a defect-free application.

• UI testing enhances customer satisfaction. Software Testing

tries to uncover all possible defects and test an application as

per customer requirements.

• For example, eCommerce is dependent on the customer, and

a satisfied customer will improve its market value and

earnings.

Testing is classified into three categories

Functional Testing: This is a type of software testing that validates

the software system against the functional requirements or

specifications.The purpose of Functional tests is to test each function

of the software application, by providing appropriate input, verifying

the output against the Functional requirements.

Functional testing mainly involves black box testing and it is not

concerned about the source code of the application. This testing

checks User Interface, APIs, Database, Security, Client/Server

communication and other functionality of the Application Under Test.

The testing can be done either manually or using automation.

The prime objective of Functional testing is checking the

functionalities of the software system. It mainly concentrates on –

• Mainline functions: Testing the main functions of an

application

• Basic Usability: It involves basic usability testing of the system.

It checks whether a user can freely navigate through the screens

without any difficulties.

• Accessibility: Checks the accessibility of the system for the

user

• Error Conditions: Usage of testing techniques to check for

error conditions. It checks whether suitable error messages are

displayed.

Non-Functional Testing or performance Testing : This is defined

as a type of Software testing to check non-functional aspects

(performance, usability, reliability, etc) of a software application. It is

designed to test the readiness of a system as per nonfunctional

parameters which are never addressed by functional testing.

• An excellent example of non-functional test would be to check

how many people can simultaneously login into a software.

• Non-functional testing is equally important as functional

testing and affects client satisfaction.

Maintenance Testing: It is also known as post-release software

testing. This type of software testing occurs when the software has

been released into production, and any changes have been made to fix

bugs or add new features to the existing system.

Types Of Maintenance Testing

When the maintenance testers validate the application, they must

consider two things. Based on the test types

https://www.guru99.com/functional-testing.html
https://www.guru99.com/functional-testing.html

Confirmation Testing: On this confirmation maintenance testing, the

Testers or QA must mainly focus on the modified functionalities. They

have to verify every aspect of the application is working as it should

be.Regression Testing: Testing the existing functionality to ensure it

is not broken or degraded by the new functionality.

Testing Strategies in Software Testing

1. Unit testing – Tests individual units or components of the

software to ensure they are functioning as intended.

2. Integration testing – Tests the integration of different

components of the software to ensure they work together as

a system.

3. System Testing- is a level of testing that validates the

complete and fully integrated software product. The purpose

of a system test is to evaluate the end-to-end system

specifications. Usually, the software is only one element of a

larger computer-based system. Ultimately, the software is

interfaced with other software/hardware systems. System

Testing is defined as a series of different tests whose sole

purpose is to exercise the full computer-based system.

4. Program Testing- in software testing is a method of

executing an actual software program with the aim of testing

program behavior and finding errors. The software program

is executed with test case data to analyse the program

behavior or response to the test data. A good program testing

is one which has high chances of finding bugs.

Testing Objectives

Verification: A brief explanation of what is verification in software

testing would be: it is the process of assessing software to evaluate

if the results of a certain development phase meet the requirements

https://testfort.com/software-testing-services
https://testfort.com/software-testing-services

established at the beginning of that phase. Software Verification

Testing is the process of examining documentation, designs, code,

and programs to determine whether or not the software was

constructed in accordance with the requirements. Verification

operations include reviews, walk-throughs, and inspections.

Although verification can assist to identify whether the program is

of good quality, it cannot guarantee that the system is functional.

The purpose of verification is to determine if the system is well-

engineered and error-free.

An example of verification in software testing

To answer the question of what verification activity is in software

testing, we need to look into Static testing. Static testing techniques

are a strong tool to increase software development quality and

productivity by supporting engineers in identifying and correcting

their own errors early in the software development process. This

program is tested without running the code by doing review,

walkthrough, inspection, or analysis, among other things.

Static testing may be done manually or using various software

testing tools. It occurs early in the Software Development Life

Cycle, during the Verification Process.

Static testing is not a substitute for dynamic testing, but all software

companies should consider employing reviews in all key elements of

their work, including requirements, design, implementation, testing,

and maintenance.

Defects found during static testing include departures from

standards, missing requirements, design flaws, non-maintainable

code, and conflicting interface definitions.

 Validation

https://qarea.com/services/web-development

A short answer would be that, the method for determining if

software meets stated criteria during or at the conclusion of the

development process.

Validation is the process of determining if the completed product

fulfills the customer’s expectations and criteria. It is a dynamic

validation and testing technique for the real product.

An example of validation in software testing

Software is performed using a set of input values in Dynamic

Testing Technique, and its output is then reviewed and compared to

what is expected. Dynamic execution is used to discover faults and

assess the code’s quality characteristics. Dynamic testing and static

testing are complementary methodologies since they identify various

sorts of faults in different ways. However, because it does not begin

early in the Software Development Life Cycle, it significantly raises

the cost of fault correction. It is completed during the Validation

Process, which evaluates the finished product.

Verification Validation

It includes checking documents,

design, codes and programs.

It includes testing and validating the

actual product.

Verification is the static testing. Validation is the dynamic testing.

Verification Validation

It does not include the execution of

the code.
It includes the execution of the code.

Methods used in verification are

reviews, walkthroughs, inspections

and desk-checking.

Methods used in validation are Black

Box Testing, White Box Testing and

non-functional testing.

It checks whether the software

conforms to specifications or not.

It checks whether the software meets

the requirements and expectations of a

customer or not.

It can find the bugs in the early stage

of the development.

It can only find the bugs that could not

be found by the verification process.

The goal of verification is

application and software architecture

and specification.

The goal of validation is an actual

product.

Quality assurance team does

verification.

Validation is executed on software code

with the help of testing team.

It comes before validation. It comes after verification.

It consists of checking of

documents/files and is performed by

human.

It consists of execution of program and

is performed by computer.

Verification refers to the set of

activities that ensure software

correctly implements the specific

function.

Validation refers to the set of activities

that ensure that the software that has

been built is traceable to customer

requirements.

After a valid and complete

specification the verification starts.

Validation begins as soon as project

starts.

Verification Validation

Verification is for prevention of

errors.
Validation is for detection of errors.

Verification is also termed as white

box testing or static testing as work

product goes through reviews.

Validation can be termed as black box

testing or dynamic testing as work

product is executed.

Verification finds about 50 to 60%

of the defects.

Validation finds about 20 to 30% of the

defects.

Verification is based on the opinion

of reviewer and may change from

person to person.

Validation is based on the fact and is

often stable.

Verification is about process,

standard and guideline.
Validation is about the product.

Defects

A software defect is an error, flaw, failure, or fault in a computer

program that causes it to produce an incorrect or unexpected

result, or to behave in unintended ways. A software bug occurs

when the actual results don’t match with the expected results.

Developers and programmers sometimes make mistakes which

create bugs called defects. Most bugs come from mistakes that

developers or programmer make.

7 Principles of Software Testing

1. Testing shows presence of defects

2. Exhaustive testing is not possible

3. Early testing

4. Defect clustering

5. Pesticide paradox

6. Testing is context dependent

7. Absence of errors fallacy

1) Exhaustive testing is not possible

Exhaustive testing is not possible. Instead, we need the optimal

amount of testing based on the risk assessment of the application.And

the million dollar question is, how do you determine this risk?To

answer this let’s do an exercise

In your opinion, Which operation is most likely to cause your

Operating system to fail?

I am sure most of you would have guessed, Opening 10 different

application all at the same time.

So if you were testing this Operating system, you would realize that

defects are likely to be found in multi-tasking activity and need to be

tested thoroughly which brings us to our next

principle Defect Clustering

2) Defect Clustering

Defect Clustering which states that a small number of modules

contain most of the defects detected. This is the application of the

Pareto Principle to software testing: approximately 80% of the

problems are found in 20% of the modules.By experience, you can

identify such risky modules. But this approach has its own problems

If the same tests are repeated over and over again, eventually the same

test cases will no longer find new bugs.

3) Pesticide Paradox

Repetitive use of the same pesticide mix to eradicate insects during

farming will over time lead to the insects developing resistance to the

pesticide Thereby ineffective of pesticides on insects. The same

applies to software testing. If the same set of repetitive tests are

conducted, the method will be useless for discovering new defects.

To overcome this, the test cases need to be regularly reviewed &

revised, adding new & different test cases to help find more defects.

Testers cannot simply depend on existing test techniques. He must

look out continually to improve the existing methods to make testing

https://www.guru99.com/defect-management-process.html

more effective. But even after all this sweat & hard work in testing,

you can never claim your product is bug-free. To drive home this

point, let’s see this video of the public launch of Windows 98

You think a company like MICROSOFT would not have tested their

OS thoroughly & would risk their reputation just to see their OS

crashing during its public launch!

4) Testing shows a presence of defects

Hence, testing principle states that – Testing talks about the presence

of defects and don’t talk about the absence of defects. i.e. Software

Testing reduces the probability of undiscovered defects remaining in

the software but even if no defects are found, it is not a proof of

correctness.

But what if, you work extra hard, taking all precautions & make your

software product 99% bug-free. And the software does not meet the

needs & requirements of the clients.This leads us to our next

principle, which states that- Absence of Error

5) Absence of Error – fallacy

It is possible that software which is 99% bug-free is still unusable.

This can be the case if the system is tested thoroughly for the wrong

requirement. Software testing is not mere finding defects, but also to

check that software addresses the business needs. The absence of

Error is a Fallacy i.e. Finding and fixing defects does not help if the

system build is unusable and does not fulfill the user’s needs &

requirements.To solve this problem, the next principle of testing states

that Early Testing

6) Early Testing

Early Testing – Testing should start as early as possible in the

Software Development Life Cycle. So that any defects in the

requirements or design phase are captured in early stages. It is much

cheaper to fix a Defect in the early stages of testing. But how early

one should start testing? It is recommended that you start finding the

bug the moment the requirements are defined. More on this principle

in a later training tutorial.

https://www.guru99.com/software-testing-introduction-importance.html
https://www.guru99.com/software-testing-introduction-importance.html

7) Testing is context dependent

Testing is context dependent which basically means that the way you

test an e-commerce site will be different from the way you test a

commercial off the shelf application. All the developed software’s are

not identical. You might use a different approach, methodologies,

techniques, and types of testing depending upon the application type.

For instance testing, any POS system at a retail store will be different

than testing an ATM machine.

Difference between Testing and Debugging

Testing Debugging

Testing is the process to find

bugs and errors.

Debugging is the process of

correcting the bugs found during

testing.

It is the process to identify the

failure of implemented code.

It is the process to give

absolution to code failure.

Testing is the display of errors.
Debugging is a deductive

process.

Testing is done by the tester.
Debugging is done by either

programmer or the developer.

There is no need of design

knowledge in the testing

process.

Debugging can’t be done

without proper design

knowledge.

https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-engineering-debugging/

Testing Debugging

Testing can be done by insiders

as well as outsiders.

Debugging is done only by

insiders. An outsider can’t do

debugging.

Testing can be manual or

automated.

Debugging is always manual.

Debugging can’t be automated.

It is based on different testing

levels i.e. unit testing,

integration testing, system

testing, etc.

Debugging is based on different

types of bugs.

Testing is a stage of the

software development life cycle

(SDLC).

Debugging is not an aspect of

the software development life

cycle, it occurs as a consequence

of testing.

Testing is composed of the

validation and verification of

software.

While debugging process seeks

to match symptoms with cause,

by that it leads to error

correction.

Testing is initiated after the

code is written.

Debugging commences with the

execution of a test case.

Testing Debugging

Testing process based on

various levels of testing-system

testing, integration testing, unit

testing, etc.

Debugging process based on

various types of bugs is present

in a system.

 Testing Metrics and

measurements

Software testing metrics are quantifiable indicators of the software
testing process progress, quality, productivity, and overall health. The
purpose of software testing metrics is to increase the efficiency and
effectiveness of the software testing process while also assisting in making
better decisions for future testing by providing accurate data about the
testing process. A metric expresses the degree to which a system, system
component, or process possesses a certain attribute in numerical terms. A
weekly mileage of an automobile compared to its ideal mileage specified by
the manufacturer is an excellent illustration of metrics.

Testing Life Cycle

https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-testing-basics/

 Software Testing Myths

Myth 1: Testing is Expensive

Reality: Testing is not cheap, but not testing is even more expensive.

A study by IBM demonstrated that fixing a production defect is at

least six times more costly than testing. Defects also lead to a bad

customer experience and possible loss of customers.

Myth 2: Testing is Time-Consuming

Reality: Test can be time-consuming when it is considered an

afterthought. Testing processes can happen parallelly during

the SDLC phases. The QA team should start writing test cases and

begin planning as soon as the software specification is made

available. When the developers finish coding their modules, the

testers can perform unit testing and integration testing. System

testing indeed takes time because it is a manual process. But if you

plan well, you can ensure that the release is not delayed unnecessarily.

Myth 3: Only Fully Developed Products are Tested

Reality: There is no doubt that testing relies on the source code, but

testing processes and planning can begin as soon as the software

specification document is available. Your QA team can start writing

tests as soon as the software specification is available without waiting

for the developers to complete coding.

https://tuskr.app/learn/defect
https://tuskr.app/learn/software-development-life-cycle
https://tuskr.app/learn/unit-testing
https://tuskr.app/learn/integration-testing
https://tuskr.app/learn/system-testing
https://tuskr.app/learn/system-testing

Myth 4: Complete Testing is Possible

Reality: Software is inherently complex, and practically, no amount of

testing can fully test a software application. Almost all software

applications depend on other software libraries or components which

means that bugs in those areas will be manifest to end-users.

Myth 5: A tested software is bug-free

Reality: This is a widespread misconception believed by clients,

managers, and even novice developers. Even after an experienced

tester has reviewed the application, no one can say with utter certainty

that a software application is 100 percent bug-free.

Myth 6: Missed flaws are due to testers

Reality: This is not always true. Developers have a habit of changing

the code without notifying the QA group because they believe it was

"just a small change." Sometimes the time allocated to testing is not

enough to do thorough testing. In some cases, the documentation is

ambiguous and open to interpretation resulting incomplete or

incorrect test cases.

Myth 7: Testers are in charge of the quality of the product

Reality: Software quality has multiple dimensions and is challenging

to achieve. To be sincere about quality means dedicating enough time

and resources to it. Unfortunately, in many instances, this is not the

case. The testing team is often the scapegoat because it is easy to ask

them: "How did you not test this basic thing?". The answer is not easy

as it appears.

Myth 8: Test automation always decreases the time

Reality: Yes, automated testing can decrease time if used

appropriately. In some cases, like malware and vulnerability scanning

in security testing, automation can significantly reduce time without

much human effort. But in most cases, automation requires a non-

trivial setup, massive test data, and entering scenarios. If requirements

are changing, automated testing can be slower and end up wasting

even more time.

https://tuskr.app/learn/software-quality
https://tuskr.app/learn/automated-testing
https://tuskr.app/learn/security-testing
https://tuskr.app/learn/test-data

Myth 9: Anyone can test a software application

Reality: People outside the IT industry believe that anyone can test

software and that testing is not a creative process. Testers, however,

know very well that this is a myth. A good tester can write faster,

fewer, and more effective test cases than a bad tester. During ad hoc

testing, a good tester can easily outshine an average tester. Not

everyone can be a detective!

Myth 10: A tester's only job is to find bugs

Reality: The job of the QA team is to reduce the overall cost of

quality and secure customer satisfaction, which means ensuring high

quality in all the applicable software quality dimensions, not just

bugs. It starts with examining functional suitability to testing end-user

usability. But if a team hires testers only for hunting defects, that is all

they will get.

https://tuskr.app/learn/ad-hoc-testing
https://tuskr.app/learn/ad-hoc-testing
https://tuskr.app/learn/cost-of-quality
https://tuskr.app/learn/cost-of-quality
https://tuskr.app/learn/software-quality-dimensions

