K. T. S. P. Mandal's

Hutatma Rajguru Mahavidyalaya, Rajgurunagar

Tal-Khed, Dist-Pune (410 505)

Second Year Science Semester -II (2019 Pattern)

Subject – Numerical Methods and Its Applications S. Y. B. Sc., Paper-II:MT-232

Chapter 3: Numerical Differentiation and Integration

Topic- Numerical Differentiation, Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 3/8th rule,

Prepared by
Prof. R. M. Wayal
Department of Mathematics
Hutatma Rajguru Mahavidyalaya, Rajgurunagar

Numerical Integration

* General Quadrature Formula for Equidistant Ordinates. Let I = jydr where y=fra) be a function given for equally spaced values of arguments, say a=200, 20+h, 20+2h, ---, 20+nh=b. Let 40,41,421---4n be the values of first at no, ..., in respectively. Then General quadrature formula is given by

$$I = h \left[n_{10} + \frac{n_{2}^{2}}{2} \Delta y_{0} + \left(\frac{n_{3}^{3} - n_{2}^{2}}{3} \right) \frac{\Delta^{2} y_{0}}{2!} + \frac{1}{3!} \left(\frac{n_{4}^{4} - n_{3}^{3} + n_{2}}{4} \right) \Delta^{3} y_{0} + \cdots \right]$$
By putting $n = 1, 2, 3, ---$ we obtain different

quadrature formulae. where $h = \frac{b-a}{n}$, n via number of subvintervals.

* Trapezoidal Rule -

Put n=1 in general quadrature formula we get

$$\int_{0}^{b} f(x) dx = \frac{h}{2} \left[(40+40) + 2(41+42+...+40-1) \right]$$

* Simpson's tod Rule -Put n=2 in general quadrature formula we

 $\int_{0}^{1} f(x) dx = \frac{h}{3!} \left[(40+40) + 4(41+43+42+...+40-1) \right]$ where n is even

where n is multiple of 3.

En: 1) Evaluate & tanx dx by Trapezoidal rule from the values provided in the following table

ઝ	0	म ४	π14	
tanx	0	0.4141	1	
•	4.	٧,	42	

here
$$h = \frac{\pi}{8} - o = \frac{\pi}{8}$$

$$T = \int_{0}^{\pi/4} f(x) dx = \frac{h}{2} \left[(4.442) + 2(4.1) \right]$$

$$= \frac{\pi}{8} \left[(0+1) + 2(0.4141) \right]$$

$$= \frac{\pi}{16} \left[1.8282 \right]$$

$$= 0.3590.$$

Ex. 2] A curve is drawn to pass through the point given by the following table

7(1.5	م	2.5	3	3.5	4
fa	2	2.4	2.7	2.8	3-0	2-6	5.1

Estimate the area bounded by the curve, the x-axis and the lines n=1 g n=4.

By simpson's 3th rwc

$$I = \frac{3h}{8} \left[(40+4c) + 2(43) + 3(41+42+44+45) \right]$$

$$= \frac{3(0.5)}{8} \left[(2+2.1) + 2(2.8) + 3(2.4+2.7+3+2.0) \right]$$

$$= 0.1875 \left[4.1 + 5.6 + 32.1 \right]$$

Area = 7.8375

En. 3] Find 5 sinx dx by Trapezoidal, Simpson's 1d,

and 3th rule from the values

provided in the table.

ગ	0	<u>π</u> 12	2 <u>T</u> 12	3T/12	417/12	51112	π/2
シャワング	٥	0.1288	o· 5	1505.0	0.8600	0.9659	l
	4 8	4,	42	43	44	45	46

=) 1) Trapezoidal rule
$$h = \frac{\pi}{12}$$

$$I = \frac{\pi}{12} \times \frac{1}{2} \left[(9+1) + 2(9+2+3+4+45) \right]$$

$$= \frac{\pi}{12} \times \frac{1}{2} \left[(9+1) + 2(9+2+3+4+45) \right]$$

$$+ 0.9(59)$$

17/2 Ssimon = 0.9943

2) Simpson's 13rd rule

$$= \frac{\pi}{3c} \left[1 + 2.7321 + 7.7272 \right]$$

$$= \frac{\pi}{3c} \left[11.4593 \right]$$

J sins di = 1.00001

$$T = \frac{3h}{8} \left[(40+4c) + 2(43) + 3(41+42+44+45) \right]$$

$$= \frac{3(\frac{\pi}{12})}{8} \left[(0+1) + 2(0.7071) + 3(0.2588+0.5+0.9659) \right]$$
0.86603 + 0.9659)

$$= \frac{\pi}{32} \left[1 + 1.4142 + 7.7722 \right]$$

$$\Rightarrow \frac{1}{16} + \frac{1}{16} = \frac{1}{16}$$

$$\Rightarrow \frac{1}{16} = \frac{1}{16}$$

$$\Rightarrow \frac{1}{16} = \frac{1}{16}$$

ત	0	TILC	271/16	37/10	47116	5711c	CTI/16	٦ π/۱ς
Josa	1	0.9903	0.9612	0.4118	0.8409	0.7456	0.6186	0-4416
	70	4,	42	43	44	75	٧٤	47

A	17/2
JO52	Q
	٧.,

En. 5] compute the reduce of Jogz from the formula dogs = \$ 1 dr using simpson's rule taking

$$\Rightarrow \text{ Henc } a=1, b=5 \text{ } 20=10$$

N	1	1-1	1.2	1.3	1-4	1.5	١- ٥	1.7
71	1	0-9090	0.8333	07692	0-7142	0.6667	0.625	0.5882
	40	٧,	42	43	44	45	40	47

ગ	1.8	1.9	2_
7	0.5556	0.5263	0.5
	48	49	410

By simpson's
$$\frac{1}{3}$$
 rwe $\frac{1}{3}$ by $\frac{$

Example-6] Estimate 5 log 2 dividing the internal

into four equal parts and compare with correct value.

=) Take
$$n = 4$$
, $a = 1$, $b = 5$
 $\therefore h = \frac{b-a}{n} = \frac{5-1}{4} = 1$
 $\log_2 x = 1$

ત્ર	1	2	3	4	5
Jog 27	0	0-6931	1.0986	1-3863	1.6094
	40	9,	42	43	44

By simpson's 3rd rwe

$$\int_{1}^{5} \log_{\frac{1}{2}} dn = \frac{h}{3} \left[(40+44) + 2(42) + 4(41+48) \right]$$

$$= \frac{1}{3} \left[1.6094 + 2.1972 + 8.3176 \right]$$

$$-4.0414$$

$$\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dx = \int_{0}^{\infty} \int_{0}^{\infty}$$

- Here
$$h = 1$$
, $a = 2$, $b = 10$

$$f(x) = \frac{1}{1+x}$$

7(2	3	4	5	۲	7	৪	9	10
1+21	o ·3333	0.25	0.2	٥٠/وترا	0-1428	0.125	0.1111	0.1	0.0909
	4.	٧,	42	43	44	45	40	۲٦	18

By simpson's 3rd rule

Now
$$\frac{2}{3}\frac{1+3}{1+3}$$
 $dx = \left[\int v(1+3) \right]^{5}$

from the bank is given in the table below

ગ	0	10	20	30	40	50	60	70	68
4	٥	4	7	q	12	15	14	8	3
	40	٧,	42	43	44	75	۲ے	47	78

$$\Rightarrow Area = \begin{cases} 80 \\ 5 \\ 600 \end{cases}$$

By Simpson's L'd rule

= 710 sq. mt.

En. 9 - The udocity of a vehicle (running on a straight road) at interval of 2 minutes are given below

Time in minutes	0	2	4	6	8	10	12
Volocity in km/hr	0	22	30	27	18	7	0

Apply simpson's rule to obtain the distance covered by the uchicle.

distance = 5 ndocity

Time inminutes	0	2	4	C	8	10	12
nd. in km/min	ð	22/60	30/Ca	27/60	18/50	7/60	0
	4 =	41	42	43	44	45	Yc

h=2
By simpsons 3th rule

 $\int_{8}^{4} f(r) dr = \frac{3h}{8} \left[(4.44c) + 2(43) + 3(41+12+44+45) \right]$

$$= \frac{3(2)}{8} \left[0 + 2\left(\frac{27}{c_0}\right) + 3\left(\frac{22}{c_0} + \frac{30}{c_0} + \frac{18}{c_0} + \frac{7}{c_0}\right) \right]$$

$$= \frac{1}{80} \left[285 \right]$$

$$= 3.5625$$

$$\therefore 45 = 3.5625 \text{ km}$$

Ex. Estimate the area bold by the curue, the x-onus, and the entreme ordinates, a curue is given by the points (2,4) given below (0,23), (0.5,19), (1,14), (1.5,11), (2,12.5), (2,5,13), (3,19), (3.5,20), (4,20).

\Rightarrow	બ	0	0.5	١	1.5	2	2-5	3	3.5	4
	۲	23	19	14	17	12.5	13	19	20	~0
		4.	٧,	42	43	44	45	Ч с	47	48

$$h = 0.5$$
By Simpson's $\frac{1}{3}$ 'd $rw = \frac{1}{3}$
Area = $\int f(r)dr = \frac{1}{3} [(4.44) + 2(4.44) + (4.44) + 4(4.44)]$

$$= \frac{0.5}{3} \left[46 + 91 + 252 \right]$$

$$= 64.8333 = 9 - \text{units}.$$

Refrences - 1) Test book of 5.7 18.5c. Humorical methods and its application by Mirali Prakashan.

2) Text book of s.y. B.Sc. Numerical methods and its application, Golden series by Mirali Prokashan.

Chapter - 3 Numerical Differentiation and Integration.

* Numerical differentiation
1) If we have to find dy at the point No, near

$$\left(\frac{\beta^2 q}{4 n^2}\right)_{n=n_0} = \frac{1}{h^2} \left[\Delta^2 q_0 - \Delta^3 q_0 + \frac{11}{12} \Delta^4 q_0 - \frac{5}{6} \Delta^5 q_0 + \cdots \right]$$

$$\left(\frac{dq}{dq}\right)_{3=30} = \frac{1}{10} \left[-240 + \frac{5}{12} -2540 + \frac{5}{10} -2540 + \frac{7}{10} -2440 + \frac{7}{10} \right]$$

$$\left(\frac{\partial^{2}q}{\partial x^{2}}\right)_{\lambda=2n} = \frac{1}{h^{2}} \left[=^{2}q_{0} + =^{3}q_{0} + \frac{11}{12} \nabla^{4}q_{0} + \frac{5}{6} = ^{5}q_{0} + \cdots \right]$$

En. Find dy at n=0.6 & dry at n=04 from the following data

ſ			0.5		0.7	
İ	٩	1.5836	1.7974	2.0442	2.3275	2.6511

>			A	2,		
	ال	4	△ 4	29	5 ³ 7	<u> </u>
	04	1.5836	0 . 2138			
	0.5	1.7974		0,033	0.0035	2002
	o - C	2.0442	0 · 2468	_{ට 1} 0365	0,0038	0.0003
		2.3275		0.0403		
	o.8	2.6511				

$$\left(\frac{34}{34}\right)_{N=N_0} = \frac{1}{h} \left[24_0 - \frac{1}{2} 24_0 + \frac{1}{3} 24_0 - \frac{1}{4} 24_0 + \frac{1}{3} \right]$$

$$= \frac{1}{0.1} \left[0.2833 - \frac{1}{2} (0.0403) \right]$$

$$= \frac{1}{0.1} \left[0.26315 \right] = 2.6315$$

2)
$$\frac{d^2y}{dx^2}$$
 at $n=0.4$, $h=0.1$

$$\left(\frac{d^{2}q}{d\eta^{2}}\right)_{\eta=\eta_{0}} = \frac{1}{h^{2}} \left[\begin{array}{c} \Delta^{2}q_{0} - \Delta^{3}q_{0} + \frac{11}{12} \Delta^{4}q_{0} - \frac{5}{6} \Delta^{5}q_{0} + \frac{1}{12} \Delta^{4}q_{0} - \frac{5}{$$

2] Final dy at n=1 from the following table

N	2	3	4	
24	8	27	64	

 \Rightarrow

7	Ч	64	527	∆ ³ y
((J		
2,	8	19	12	6
3	27	37	18	
4	64) [

$$\frac{dy}{dx} \Big|_{x=x_0} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \cdots \right] \\
= \frac{1}{h} \left[7 - \frac{1}{2} (12) + \frac{1}{3} (6) \right] \\
= \frac{1}{h} \left[7 - 6 + 2 \right] \\
= 3$$

3) A rod rotating in a plane about one of its end The angle 8 in radian at a different times tin seconds are given below

ગ	Ł	O	0.2	0-4	٥-٥	8-0	
4	ð	0	0.15	0.5	1.15	S	હ. ૧૦

Find its angular redocity and angular acceleration when to o-c

ان	4	▽ 'n	724	734	- 44	754
0	0	0.15	·	·		,
0-2	0.15	0/35	0.5	0 '		
0.4	o·5		0.3	-0.1	-0.5	0.45
٥- ٢	1:15	0.65	0,2	0115	0.25	
0.8	2,	0.85	0/35	0 713		
1	g· 2_	, -				

$$\frac{dy}{dx} = 0.6, h = 0.2$$

$$\frac{dy}{dx} = \frac{1}{x \cdot 2x_{n}} = \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{2} (0.3) + \frac{1}{3} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0.1) \right]$$

$$= \frac{1}{0.2} \left[0.65 + \frac{1}{3} (0.3) + \frac{1}{12} (0$$

$$\left(\frac{d^{2}y}{dx^{2}}\right)_{7=78} = \frac{1}{h^{2}} \left[\begin{array}{c} B^{2}y_{0} - B^{3}y_{0} + \frac{11}{12} B^{4}y_{0} + \frac{11}{12} B^$$

Ex. Find the first derivative of yat x=04 from the following table

ગ	0./	0.2	0 - 3	0-4
4	1.10517	1.22140	1-34986	1-49182

=>

n(Ч	74	√2y	$\nabla^3 Y$
0.1	1.10517	0.11623		
0.2	1.22140		0 101223	0 100127
0.3	1.31,90/			
0.4	1.49182	0.14196		

Here 20=0-4 5 h=0-1

Reference: Numerical methods and its applications, text book for S.Y.B.Sc., by Golden series, Nirali Prakashan