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I. Scattering experiments
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Scattering experiment:

A beam of incident scatterers with a given flux or intensity (number of particles per unit

area dA per unit time dt ) impinges on the target (described by a scattering potential);

the flux can be written as

dNinc
dA dt

inc —

The number of particles per unit time which are detected in a small region of
the solid angle, dQ2, located at a given angular deflection specified by (0, ¢), can

be counted as

dNsc
dS2 dt




Scattering cross section

The differential cross-section for scattering is defined as the number of particles scattered
into an element of solid angle d€2 in the direction (6,¢) per unit time :

| do(8.6) 1 dN,
d—g(_ﬁ,@) _ ANy ANinc — b ) _
a2 AQdt dA dt dQ J.. dQ

[dimensions of an area] Jine - incident flux

The total cross-section corresponds to scatterings through any scattering angle:

_/issz_fmj fﬁ in(0) do <2 (6, ¢)
o= d i~ ) dg i sin(f ) dt 0 A, ¢

Most scattering experiments are carried out in the laboratory (Lab) frame in which the
target is initially at rest while the projectiles are moving. Calculations of the cross sections
are generally easier to perform within the center-of-mass (CM) frame in which the center
of mass of the projectiles—target system is at rest (before and after collision)

=» one has to know how to transform the cross sections from one frame into the other.

Note: the total cross section o is the same in both frames, since the total number of
collisions that take place does not depend on the frame in which the observation is carried

out. However, the differential cross sections do/dC2 are not the same in both frames, since

the scattering angles (0,¢) are frame dependent. 3




Connecting the angles In the Lab and CM frames

Elastic scattering of two structureless particles in the Lab and CM frames:
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To find the connection between the Lab and CM cross sections, we need first to find
how the scattering angles in one frame are related to their counterparts in the other.

If 71z ?111(1 Flc denote the position of my in the Lab and CM frames, respectively,
and if R denotes the position of the center of mass with respect to the Lab frame,
we have 71, =71 + R. A time derivative of this relation leads to

Vi, = V. + Vewm,

where 71z and Vic are the velocities of my in the Lab and CM frames before collision
and 7., isthe velocity of the CM with respect to the Lab frame. Similarly, the

velocity of my after collision is : : :
Vi, =V"e +Veur.




Connecting the angles In the Lab and CM frames

Since V
o 1V, —> VfL cost = Vfc cost + Ve,
7' e — T«
IIL sy = Ilc sm .

Dividing (1.6) by (1.5), we end up with

sin
cost! + Vewu/ V{C ,

tant; =

Use that CM momenta

Since .T}.:L — (0. from (1.8) 2

miVy, +myVo, 1

s _— _—
CM — —
my -+ mj;

miy -+ m;

or from (1.9) = Vl; — I;’lf + 14 Vll_,.f“'(fisl + 7).
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Connecting the angles In the Lab and CM frames

Since the center of mass is at rest in the CM frame, the total momenta before and after

collisions are separately zero: Pc = Pic + Poc = E)E; = Pic + Pac =0

pc=mVi,—ml, =0 — Vag = — T, (1.12)
M7
' ' . ' o L
Pc =mVy cost —myV; cost) =0 = T, EVIC (1.13)
Since the kinetic energy is conserved:
ip 2 2
%m] Vﬂ; —i—%mgiC — %ml Vfc —{—%H’Iz VL;'C (1.14)
V] =Vieand V= Vac. (1.15)

In the case of elastic collisions, the speeds of the particles in the CM frame are the
same before and after the collision;

F 1.11) = Vi =V, = —=T7.. (1.16)
rom ( ) I 1o P——— 1,
Dividing (1.9) by (1.16) = Ve (1.17)
V{ - ma
¢ 6




Connecting the angles In the Lab and CM frames

Finally, a substitution of (1.17) into (1.7) yields

sin ¢/ sin

tant; = - = —
cost + Va./ Vi, cos + mq/m>

and using cos#; = 'l;’“\/tanz oh + 1,
we obtain

mi
7

cos! +

cosfl] =

. m
14+ 3 + 2% cos0
\ ms my

| ]

Note: In a similar way we can establish a connection between 6, and 6.

From (1.4) we have I@L — I{;’C +Ven.  +using Vey = V3 = Vac.

=>» the x and y components of this relation are

V2’L costh = —V;fc cosO + Ve = (—cosf + 'l)V;_fC,
V,, smb, = =V, sm0;
s simd 0 T —0
tanth = —_— - =cot| =) = & = .
—cost + Veas/ VZ(“ ]l — costl 2 2




Connecting the Lab and CM Cross Sections

The connection between the differential cross sections in the Lab and CM frames can be
obtained from the fact that the number of scattered particles passing through an
infinitesimal cross section is the same in both frames:

da (01, 1) = da (0, )
What differs is the solid angle dQ :

inthe Lab frame: 70, — sing,do; do,
inthe CM frame: dQ = sinf dfd¢.

(df:r) dﬂlz(d—n) dﬂ——,&(dg) :(d_f:r) S.]-IIH do d{;ﬂ’
Cle Lab dQ CM dQl Lab dQ CM 5111(91 Cfﬁ] dtpl

Since there is a cylindrical symmetry around the direction of the incident

beam ¢ = ¢ - -
:> ( do ) _ ( cr) (cos®)
Lab

dQ, dQ ) .., d(cost)
d cosl) 1 +ZLcost
From (1.18) = Mkt R 72 >
d cos O - - 3/2
(l -+ % -+ ZE COS())




Connecting the Lab and CM Cross Sections

Thus : 2

o (1+ _é +28Lcos0)’?

From (1.23) and (1.20) =>»

do do (0 do
_ =4costh | — =4simn| — —_
d< ) ;.5 d<d } oy 2 d<2 J oy

Limiting cases:
1) Ifmy > my, or when 2L — 0, the Lab and CM results are the same,

“

since (1.17) leads to 6,=0 = (d_a) _ (d_a)
i ) ;o aQlcm

2) If my = m then from (1.20) & tan0; = tan(0/2) or to 0 = 0/2;
d(}' . d} e
from (1.25) > (m)m = 4(42) . cos(0)2).




From classical to quantum scat

[ering theory

Classical theory:
- scattering of hard ,spheres*

- individual well-defined trajectories

Quantum theory:

- scattering of wave pakeges < wave—particle duality

- probabilistic origin of scattering process
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I'T. Classical trajectories and cross-sections

Scattering trajectories, corresponding to
different impact parameters, b give different

scattering angles 6. 2mb db

>

All of the particles in the beam in the hatched bl
region of area de = 27 bdb are scattered into the

angular region (9, 0 + do)

Scattering center

The equations of motion for incident particle:

mr(t) = F(r)
+ Initial conditions:

> =>» defines the trajectory
y(t =—00)=b y(t=-00)=0

Z(t = —00) = =00 Voo = 2(t = —00) = 2mE
/

since initial Kinetic energy E = mu,go/z

For a particle obeying classical mechanics:

" the trajectory for the unbound motion, corresponding to a scattering event, is
deterministically predictable, given by the interaction potential and the initial conditions;

®the path of any scatterer in the incident beam can be followed, and its angular deflection
Is determined as precisely as required 11




The number of particles scattered per unit time into the angular region (@, 6+d6) with
any value of ¢ can be written as

dﬁ%c dbﬁnc
7 = do Tl v;here do :;;zb)db y
o
i I
do b(@)‘ | |
do [ } , ‘dbm) b(o) |db(®) dQ = 27 sin(6)do
—— = | T | &7 (9) ;
A 277 sin(6) sin(@) | db

The knowledge of h(#), obtained directly from Newton’s laws or other methods, is then
sufficient to calculate the scattering cross-section.

For the scattering from nontrivial central forces, the trajectory can be obtained from the
eguations of motion by using energy- and angular momentum- conservation methods

7
E.g., onecan rewrite  p _ £n1%2 + L +V(r) L - angular momentum
2mr?

in the form \/2( 12 ) dr dr do  dr .
“(E- —V(n) _ Yy

m 2mir? At dﬂ dt de
12




The angular momentum can be written via the angular velocity [ = 126

=>from (2.6) I
do = _ dr
— V(r))

r2/2m(E — L2 /2mr?

=>» the angle through which the particle moves between two radial distances r1 and r» :

2 L
AG = f dr — .
" r2/2m(E — L2 /2mr2 — V (r))

Scattering trajectories in a central potential :
'min - the distance of closest approach,

® — deflection angle
20460 =7 or O=

T 6 DI
E

2

Use that the initial angular momentum L = mvsob
andp — yy2 /2 ¥ [ — hJ/2mE

lmin

=> from (2.8), (2.9) ® — > dr b
Tmin I"2\/1 — bz/r2 T V(T)/E
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*» Impact Parameter

In a real scattering experiment, information about the scatterer can be figured out from the different rates of scattering to different
angles. Detectors are placed at various angles (0,¢). Of course, a physical detector collects scattered particles over some nonzero solid

angle.

The usual notation for infinitesimal solid angle is dQ=sin0d0d¢.

The full solid angle (all possible scatterings) is [dQ=4x the area of a sphere of unit radius.
(Note: Landau uses do for solid angle increment, but dQ has become standard.)

1

The differential cross section, written da/dQ is the fraction of the total number of scattered particles that come out in the solid angle dQ, so
the rate of particle scattering to this detector is ndo/dQ2, with n the beam intensity as defined above.

Now, we'll assume the potential is spherically symmetric. Imagine a line parallel to the incoming particles going through the center of the
atom. For a given ingoing particle, its impact parameter is defined as the distance its ingoing line of flight is from this central line. Landau

calls this p, we'll follow modern usage and call it b.

A particle coming in with impact parameter between b and b+db will be scattered through an angle between y and y+dy where we're going
to calculate, x(b) by solving the equation of motion of a single particle in a repulsive inverse-square force.

Note:. we've switched for this occasion from 0 to y for the angle scattered through because we want to save 6 for the (r,0) coordinates
describing the complete trajectory, or orbit, of the scattered particle.
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So, an ingoing cross section do=2nbdb 2
scatters particles into an outgoing spherical area (centered on the scatterer) 2zRsinyRdy 3
that is, a solid angle

dQ=2mrsinydy 4

Therefore the scattering differential cross section

do/dQ=(b(y) / siny )*|db/dy]

(Note that dy/dbdyx/db is clearly negative—increasing b means increasing distance from the scatterer, so a smaller yX)

X Total cross —section:
The total cross-section can be obtained by using equation, we get,
o= [o(Q)dQ
c =2nf 6 Osin6d6
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