Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc. MT-122: Calculus II (2019 Pattern) (Semester-II) (Paper-II) (12112)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:

- a) Whether every differential function is continuous? Justify.
- b) State interior extremum theorem.
- c) Show that absolute value function f(x) = |x| is not differential at x = 0.

d) Find general solution of
$$\frac{dy}{dx} = -\frac{x}{y}$$
.

- e) Evaluate $\lim_{x \to 1} \frac{\ln x}{x-1}$.
- f) Find nth derivative of the function $y = (ax + b)^m$
- g) Use the definition to find the derivative of $f(x) = 2x^3 + 3x + 1$ for $x \in \mathbb{R}$.

Q2) A) Attempt any one of the following

- a) State and prove Lagrange's mean value theorem.
- b) Evaluate $\lim_{x \to 0} \frac{1 \cos x}{x^2}$.

B) Attempt any one of the following

a) The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0 \\ -x^2, & \text{if } x < 0 \end{cases} \text{ show that } f \text{ is differential at } x = 0.$$

b) Find Taylor series for the function $f(x) = \sin x$ at x = 0.

Q3) A) Attempt any one of the following

- a) Verify Rolle's theorem for the function $f(x) = x^2 6x + 8$ on [2,4] and find value of c.
- b) Find integrating factor for

$$(5xy + 2y + 5)dx + (2x)dy = 0.$$

B) Attempt any one of the following

- a) State and prove Cauchy's mean value theorem.
- b) Solve Bernoulli equation $y' y = xy^2$.

Q4) A) Attempt any one of the following

- a) Evaluate $\lim_{x \to 0} \frac{1}{x} \frac{1}{\sin x}$.
- b) Find the general solution of the homogeneous differential equation

$$y' + 3x^2y = 0.$$

[5]

[5]

[5]

[5]

[5]

[5]

B) Attempt any one of the following x^4

a) Find nth derivative of
$$\frac{x}{(x-1)(x-2)}$$
.
b) Calculate $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial y^2}, \frac{\partial^2 z}{\partial x \partial y}$ when $z = x^2 + 3xy + 2y - 7$.