Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-122: Calculus II
 (2019 Pattern) (Semester-II) (Paper-II) (12112)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Whether every differential function is continuous? Justify.
b) State interior extremum theorem.
c) Show that absolute value function $f(x)=|x|$ is not differential at $x=0$.
d) Find general solution of $\frac{d y}{d x}=-\frac{x}{y}$.
e) Evaluate $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.
f) Find $\mathrm{n}^{\text {th }}$ derivative of the function $y=(a x+b)^{m}$
g) Use the definition to find the derivative of $f(x)=2 x^{3}+3 x+1$ for $x \in \mathbb{R}$.

Q2) A) Attempt any one of the following
a) State and prove Lagrange's mean value theorem.
b) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
B) Attempt any one of the following
a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{rr}
x^{2}, & \text { if } \\
-x^{2}, & \text { if }
\end{array} x<0 \quad \text { show that } f \text { is differential at } x=0\right.
$$

b) Find Taylor series for the function $f(x)=\sin x$ at $x=0$.

Q3) A) Attempt any one of the following
a) Verify Rolle's theorem for the function $f(x)=x^{2}-6 x+8$ on $[2,4]$ and find value of c .
b) Find integrating factor for

$$
(5 x y+2 y+5) d x+(2 x) d y=0
$$

B) Attempt any one of the following
a) State and prove Cauchy's mean value theorem.
b) Solve Bernoulli equation $y^{\prime}-y=x y^{2}$.

Q4) A) Attempt any one of the following
a) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{\sin x}$.
b) Find the general solution of the homogeneous differential equation

$$
y^{\prime}+3 x^{2} y=0
$$

B) Attempt any one of the following
a) Find $\mathrm{n}^{\text {th }}$ derivative of $\frac{x^{4}}{(x-1)(x-2)}$.
b) Calculate $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial y^{2}}, \frac{\partial^{2} z}{\partial x \partial y}$ when $z=x^{2}+3 x y+2 y-7$.

