Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-122: Calculus II
 (2019 Pattern) (Semester-II) (Paper-II) (12112)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Show thet every differential function is continuous.
b) State Cauchy's mean value theorem.
c) Define relative extremum function.
d) Find general solution of homogeneous differential equation $y^{\prime}+3 x^{2} y=0$.
e) Check whether following differential equation is exact or not

$$
3 x^{2} y^{2} d x+6 x^{3} y d y=0
$$

f) Find ${ }^{\text {th }}$ derivative of the function $y=a^{3 x}, a>0$.
g) Evaluate $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$.

Q2) A) Attempt any one of the following
a) State and prove Rolle's theorem.
b) Find $\mathrm{n}^{\text {th }}$ derivative of $\cos ^{4} x$.
B) Attempt any one of the following
a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{rr}
x^{2}, & \text { if } \\
-x^{2}, & \text { if }
\end{array} x<0 \quad \text { show that } f \text { is differential at } x=0 .\right.
$$

b) Using Taylor series expansion find the approximate value of $\sqrt{25.15}$.

Q3) A) Attempt any one of the following
a) If $\mathrm{P}(\mathrm{x})$ is continuous on (a, b) then the general solution of the homogeneous equation $\frac{d y}{d x}+P(x) y=0$ on (a, b) is $y=c e^{-\phi(x)}$ where

$$
\phi(x)=\int P(x) d x, \quad a<x<b
$$

b) Find integrating factor for

$$
\begin{equation*}
(5 x y+2 y+5) d x+(2 x) d y=0 . \tag{5}
\end{equation*}
$$

B) Attempt any one of the following
a) Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{\sin x}$.
b) Verify the Lagrange's mean value theorem for the function $f(x)=\sqrt{x}$ on [1,9].

Q4) A) Attempt any one of the following
a) Explain method of variation of parameter.
b) Define exact differential equation. Explain the method of solving exact differential equation.
B) Attempt any one of the following
a) Solve the Bernoulli's equation $y^{\prime}+y=y^{2}$.
b) Find the general solution of following differential equation by method of variation of parameter $y^{\prime}+(\tan x) y=\cos x$.

