Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-121: Analytical Geometry
 (2019 Pattern) (Semester-II) (Paper-I) (12111)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Find the new co-ordinates of the point (3,4), when the origin is shifted to the point $(1,3)$.
b) Find the centre of the conic

$$
x^{2}+4 x y+y^{2}-2 x+2 y-6=0 .
$$

c) If the direction ratios of the line are $6,-2,3$ then find its direction cosines.
d) Find centre and radius of sphere

$$
x^{2}+y^{2}+z^{2}-4 x+6 y+10 z+2=0 .
$$

e) Find angle between the planes
$2 x-y+2 z+1=0$ and $3 x+2 y+6 z-5=0$.
f) Write equation XY plane.
g) Obtain the equation of line joining the points $(-2,1,3)$ and $(3,1,-2)$.

Q2) A) Attempt any one of the following
a) Derive the relation between old and new co-ordinates.
b) Derive equation of plane in normal form.
B) Attempt any one of the following
a) Find centre of the conic $2 x^{2}-2 x y+3 y^{2}+6 x-4 y-1=0$. Also write the equation of the conic when origin is shifted at the centre.
b) Find the angle between two lines whose direction cosines are connected by the relations $2 l-m+2 n=0, m n+n l+l m=0$.
Q3) A) Attempt any one of the following
a) Show that every equation of first degree in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ represents a plane.
b) Find the distance from the point $(1,-2,3)$ to the point where the line $\frac{x-2}{3}=\frac{y+1}{-2}=\frac{z}{1}$ meets the plane $x-2 y+z=20$.
B) Attempt any one of the following
a) Find the equation of plane passing through $\mathrm{A}(2,2,-1), \mathrm{B}(3,4,2), \mathrm{C}(7,0,6)$.
b) Find the equation of the line of intersection of the planes
$4 x+4 y-5 z=12,8 x+12 y-13 z=32$ in the symmetrical form.
Q4) A) Attempt any one of the following
a) Show that the angle between the line $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ And the plane $a_{2} x+b_{2} y+c_{2} z+d=0$ is

$$
\sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

b) Find the condition under which the plane $l x+m y+n z=p$ is a tangrnt to the standard sphere.
B) Attempt any one of the following
a) Find the equation of the planes bisecting the angles between the planes $3 x+4 y+12 z+1=0$ and $x+2 y+2 z-3=0$. Distinguish between them.
b) Find the equation of the sphere passing through the circle of intersection of $x^{2}+y^{2}+z^{2}+6 x-4 y-6 z-14=0$ and the plane $x+y-z=0$ and passing through the point $(1,1,-1)$.

