Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-121: Analytical Geometry
 (2019 Pattern) (Semester-II) (Paper-I) (12111)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Write formula for rotation of axes.
b) Find the centre of the conic

$$
3 x^{2}+2 x y+3 y^{2}-4 x+2 y+1=0
$$

c) Find direction ratios of the line joining $\mathrm{A}(2,3,-1)$ and $\mathrm{B}(0,-1,2)$.
d) Find centre and radius of sphere

$$
x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0 .
$$

e) Find the equation of the plane passing through the point $(2,1,-3)$ and parallel to the plane $x+2 y+3 z=8$.
f) Write equation XY plane.
g) Find the equation of the sphere having centre at $(1,-2,3)$ and radius 3 .

Q2) A) Attempt any one of the following
a) Find the angle θ through which the axes are rotated so that the transformed form of the expression $a x^{2}+2 h x y+b y^{2}$ is free from the product term.
b) Show that equation of a plane which intercepts $a . b . c$ on the co-ordinate axes is given by $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
B) Attempt any one of the following
a) What does the equation $x^{2}+4 x y+y^{2}=0$ become when the axes are rotated through an angle 45°.
b) Find the angle between two lines whose direction cosines are connected by the relations $l+2 m-2 n=0,3 l m-l n-m n=0$.
Q3) A) Attempt any one of the following
a) Find the equation of planes bisecting the angles between the planes $3 x+4 y+12 z+1=0$ and $x+2 y+2 z-3=0$. Distinguish between them.
a) Show that the equation of tangent plane to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ at $P\left(x_{1}, y_{1}, z_{1}\right)$ is $x x_{1}+y y_{1}+z z_{1}=a^{2}$.
B) Attempt any one of the following
a) Find the equation of plane containing the line of intersection of the planes $2 x+3 y-z+1=0, x+y+2 z+3=0$ and passing through the point $(1,-2,3)$.
b) Find the distance from the point $(0,0,0)$ where the line $\frac{x+1}{1}=\frac{y+3}{3}=\frac{z-2}{-2}$ with the plane $3 x+4 y+5 z=5$.
Q4) A) Attempt any one of the following
a) Show that the angle between the line $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$

And the plane $a_{2} x+b_{2} y+c_{2} z+d=0$ is

$$
\sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
$$

b) Show that every equation of first degree in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ represents a plane.
B) Attempt any one of the following
b) Show that the two lines are coplanar. Find the equation of the plane containing them $\frac{x-1}{-1}=\frac{y-8}{7}=\frac{z-2}{2}$ and $\frac{x+1}{1}=\frac{y-2}{-1}=\frac{z+4}{1}$.
c) Find the equation of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}+4 x-5 y-3 z-3=0$ at the point $(1,2,-1)$ on it.

