Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc. **MT-111: Algebra** (2019 Pattern) (Semester-I) (Paper-I) (11111)

Time: 2 Hours

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:

- a) Express the empty set as a subset of \mathbb{R} .
- b) Define equivalence relation.
- c) If a|b then show that a|bc for any integer c.
- d) Find the value of $\overline{15}$ in \mathbb{Z}_5 .
- e) Show that $a \equiv a \pmod{n}$.
- f) Verify that z = 1 + i satisfy the equation $z^2 2z + 2 = 0$.
- g) Evaluate $\frac{1+2i}{3-4i}$.

Q2) A) Attempt any one of the following

- [5] a) Let ~ be an equivalence relation on a nonempty set X. If $y \in [x]$ then show that [x] = [y].
- b) Given integers a and b with $b \neq 0$ there exist unique integers q and r satisfying a = bq + r, where $0 \le r < |b|$.

B) Attempt any one of the following

- a) Prepare the composition table for addition and multiplication in \mathbb{Z}_7 .
- b) Let ~ be the relation defined on \mathbb{R} by $x \sim y$ if and only f |x| = |y|.

Q3) A) Attempt any one of the following

- a) Let *a* and *b* be integers, not both zero. Then *a* and *b* are relatively prime if and only if there exist integers x and y such that 1 = ax + by.
- b) Let X be a nonempty set and ~ be an equivalence relation on X. Let $x, y \in$ X. Then exactly one of the following is true
 - $[x] = [y] = \emptyset$ i.
 - ii. [x] = [y].

B) Attempt any one of the following

- a) Find gcd(12378, 3054) and express it in the form 12378 x + 3054 y for some integers.
- b) Prove that following using Mathematical induction

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
; for all $n \ge 1$.

[5]

[5]

[5]

[5]

Max. Marks: 35

Q4)	A) Attempt any one of the following	[5]
	a) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then prove that	
	$a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$	
	b) Let θ be any real number and n be an integer. Then	
	$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta.$	
	B) Attempt any one of the following	[5]
	a) Find the unit digit of 3^{100} by the use of Fermat's theorem.	
	b) Find the square roots of the $1 - \sqrt{3}i$.	