Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-111: Algebra
 (2019 Pattern) (Semester-I) (Paper-I) (11111)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Express the empty set as a subset of \mathbb{R}.
b) Define equivalence relation.
c) If $a \mid b$ then show that $a \mid b c$ for any integer c .
d) Find the value of $\overline{15}$ in \mathbb{Z}_{5}.
e) Show that $a \equiv a(\bmod n)$.
f) Verify that $z=1+i$ satisfy the equation $z^{2}-2 z+2=0$.
g) Evaluate $\frac{1+2 i}{3-4 i}$.

Q2) A) Attempt any one of the following
a) Let \sim be an equivalence relation on a nonempty set X . If $y \in[x]$ then show that $[x]=[y]$.
b) Given integers a and b with $b \neq 0$ there exist unique integers q and r satisfying $a=b q+r$, where $0 \leq r<|b|$.
B) Attempt any one of the following
a) Prepare the composition table for addition and multiplication in \mathbb{Z}_{7}.
b) Let \sim be the relation defined on \mathbb{R} by $x \sim y$ if and only $\mathrm{f}|x|=|y|$.

Q3) A) Attempt any one of the following
a) Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist integers x and y such that $1=a x+b y$.
b) Let X be a nonempty set and \sim be an equivalence relation on X . Let $x, y \in$ X. Then exactly one of the following is true
i. $\quad[x]=[y]=\varnothing$
ii. $\quad[x]=[y]$.
B) Attempt any one of the following
a) Find $\operatorname{gcd}(12378,3054)$ and express it in the form $12378 x+3054 y$ for some integers.
b) Prove that following using Mathematical induction

$$
1+2+\cdots+n=\frac{n(n+1)}{2} ; \text { for all } n \geq 1
$$

Q4) A) Attempt any one of the following
a) If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then prove that $a+c \equiv b+d(\bmod n)$ and $a c \equiv b d(\bmod n)$
b) Let θ be any real number and n be an integer. Then
$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.
B) Attempt any one of the following
a) Find the unit digit of 3^{100} by the use of Fermat's theorem.
b) Find the square roots of the $1-\sqrt{3} i$.

