Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc. MT-111: Algebra (2019 Pattern) (Semester-I) (Paper-I) (11111)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:

- a) Let $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 3. Show that f is one-one,
- b) Define equivalence relation.
- c) Let $f, g: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2$ and g(x) = 2x + 3. Find $(g \circ f)(x)$.
- d) Find the value of $\overline{17}$ in \mathbb{Z}_3 .
- e) State Fermat's theorem.
- f) Solve the equation $z^2 + z + 1 = 0$.
- g) If z = 2 + 3i find \overline{z} and |z|.

Q2) A) Attempt any one of the following

- a) Let X be a nonempty set and ~ be an equivalence relation on X. Let $x, y \in X$. Then exactly one of the following is true
 - i. $[x] = [y] = \emptyset$
 - ii. [x] = [y].
- b) If *a* and *b* are integers, not both zero then there exists a unique positive gcd of *a* and *b* which can be expressed in the form $gcd(a, b) = ax_0 + by_0$.

B) Attempt any one of the following

a) Let $A = \{1,2,3\}$ determine which of the relation of A are reflexive, symmetric, transitive

$$R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3)\}$$
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

b) Find gcd(1819, 3587) and express it in the form 1819 m + 3587 n for some integers.

Q3) A) Attempt any one of the following

- a) Let ~ be an equivalence relation on a nonempty set X. If $y \in [x]$ then show that [x] = [y].
- b) If a|c and b|c with (a, b) = 1 then show that ab|c.

B) Attempt any one of the following

- a) If n is an odd number then $n^2 1$ is divisible by 8.
- b) Find the remainder when 2^{50} is divided by 7.

[5]

[5]

[5]

[5]

[5]

Q4) A) Attempt any one of the following

a) Let θ be any real number and n be an integer. Then

 $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta.$

b) Let P be a prime and suppose that $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

B) Attempt any one of the following

- a) Prepare the composition table for addition and multiplication in \mathbb{Z}_6 .
- b) Find expression for $\cos^6 \theta$ and $\sin^6 \theta$ in terms of cosine and sine of multiples of θ .

[5]