Savitribai Phule Pune University Hutatama Rajguru Mahavidyalaya, Rajgurunagar F.Y.B.Sc.
 MT-111: Algebra
 (2019 Pattern) (Semester-I) (Paper-I) (11111)

Time: 2 Hours

Max. Marks: 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x+3$.Show that f is one-one,
b) Define equivalence relation.
c) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2}$ and $g(x)=2 x+3$. Find $(g \circ f)(x)$.
d) Find the value of $\overline{17}$ in \mathbb{Z}_{3}.
e) State Fermat's theorem.
f) Solve the equation $z^{2}+z+1=0$.
g) If $z=2+3 i$ find \bar{z} and $|z|$.

Q2) A) Attempt any one of the following
a) Let X be a nonempty set and \sim be an equivalence relation on X . Let $x, y \in$ X. Then exactly one of the following is true
i. $\quad[x]=[y]=\varnothing$
ii. $\quad[x]=[y]$.
b) If a and b are integers, not both zero then there exists a unique positive gcd of a and b which can be expressed in the form $\operatorname{gcd}(a, b)=a x_{0}+b y_{0}$.
B) Attempt any one of the following
a) Let $A=\{1,2,3\}$ determine which of the relation of A are reflexive, symmetric, transitive

$$
\begin{gathered}
R_{1}=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3)\} \\
R_{2}=\{(1,1),(2,2),(3,3)\}
\end{gathered}
$$

b) Find $\operatorname{gcd}(1819,3587)$ and express it in the form $1819 m+3587 n$ for some integers.
Q3) A) Attempt any one of the following
a) Let \sim be an equivalence relation on a nonempty set X . If $y \in[x]$ then show that $[x]=[y]$.
b) If $a \mid c$ and $b \mid c$ with $(a, b)=1$ then show that $a b \mid c$.
B) Attempt any one of the following
a) If n is an odd number then $n^{2}-1$ is divisible by 8 .
b) Find the remainder when 2^{50} is divided by 7 .

Q4) A) Attempt any one of the following
a) Let θ be any real number and n be an integer. Then

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

b) Let P be a prime and suppose that $p \nmid a$. Then $a^{p-1} \equiv 1(\bmod p)$.
B) Attempt any one of the following
a) Prepare the composition table for addition and multiplication in \mathbb{Z}_{6}.
b) Find expression for $\cos ^{6} \theta$ and $\sin ^{6} \theta$ in terms of cosine and sine of multiples of θ.

