Total No. of Questions : 4]

P921

SEAT No. :

[Total No. of Pages : 3

[6054]-102 S.Y.B.Sc. (Regular) MATHEMATICS

MT - 232 (A) : Numerical Methods and its Applications (2019 Pattern) (Credit System) (Semester - III) (23112A) (Paper - II)

Time : 2 Hours]

[Max. Marks : 35

[5]

Instructions to the candidates:

1) All questions are compulsory.

2) Figures to the right indicate full marks

Q1)Attempt any FIVE of the following.

- a) Evaluate $\Delta(a^{2x})$ take h = 1
- b) Evaluate $\int_{0}^{1} x^{2} dx$ by Trapezoidal rule take h = 0.5.
- c) Write Runge Kutta second order formula for $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$.
- d) Write the for $y_1^{(n+1)}$ in Modified Euler's method.
- e) Define Absolute error.
- f) Find the first approximation x_1 to the root of $x^3-18 = 0$ by Newton -Raphson method with $x_0 = 2.5$
- g) Simplify $E^2(5x)$ take h=1 where E is shift operator.

- *Q2*) a) Attempt any ONE of the following.
 - i) Write the rules for round off the number to significant figure.

ii) Explain Euler's method to solve
$$\frac{dy}{dx} = f(x, y)$$
 with $y(x_0) = y_0$

- b) Attempt any ONE of the following
 - i) Find $\sqrt[3]{13}$ by Newton Raphson method (Two iterations) with $x_0 = 2.5$
 - ii) Find log 3.7 using Lagrange's interpolation formula

x	3	3.5	4
$\log x$	1.09861	1.25277	1.3863

Q3) a) Attempt any ONE of the following

i) Explain Taylor's series method to solve initial value problem

ii) Derive the formula for
$$\frac{dy}{dx}at \ x = x_0$$
 in terms of Δ .

- b) Attempt any ONE of the following.
 - i) Find y when x = 1 by Runge -Kutta fourth order method given that

$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, y (0) = 1, h = 1

ii) Find the root of $xe^{x}-2=0$ between 0.5 and 1 by Regula-Falsi method (Two iterations).

2

[5]

[5]

[5]

Q4) a) Attempt any ONE of the following.

- i) Explain bisection method to find approximate root of f(x) = 0.
- ii) Derive Lagrange's interpolation formula.

b) Attempt any ONE of the following.

i) Evaluate
$$\int_{4}^{5.2} \log_e x \, dx$$
 by Simpson's $\frac{3}{8}$ rule with h = 0.2

ii) Find y (0.1) using Runge - Kutta second order method given that $\frac{dy}{dx} = x + y \text{ with y } (0) = 1, h = 0.1$

* * *

[5]

P-923

[6054]-104

S.Y. B.Sc.

PHYSICS - I

PHY - 231 : Mathematical Methods in Physics

(2019 Pattern) (CBCS) (Semester - III) (Paper - I) (23121)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

- 1) Question 1 is compulsory.
- 2) Solve any three questions from Q2 to Q5.
- 3) Questions 2 to 5 carry equal marks.
- 4) Figures to the right indicate full marks.
- 5) Use of calculator is allowed.

Q1) Solve any five of the following :

- a) If z = x + iy, then what is modulus of Z?
- b) Define partial differentiation equation.
- c) Find the total differential of the function, $F = f(x,y) = 2xy^2$.
- d) State law of polygon of vectors.

e) If
$$\frac{d^2y}{dt^2} + w^2y = F_0 \sin qt$$
 then write its degree and order.

- f) State theorems of differentiation.
- **Q2**) Answer the following :
 - a) i) If $z = r(\cos\theta + i\sin\theta)$ is a polar form of a complex number, then obtain the exporiential form of a complex number. [3]
 - ii) Find area of a triangle having vertices at P(1,3,2), Q(2, -1, 1), R(-1, 2, 3). [3]

OR

a) What is a scalar triple product and vector triple product. Show that the scalar triple product represents the volume of a parallelopiped. [6]

[5]

SEAT No. :

[Total No. of Pages : 3