$\square$

1) All questions are compulsory.
2) Figures to the right indicate full marks

Q1)Attempt any FIVE of the following.
a) Evaluate $\Delta\left(\mathrm{a}^{2 x}\right)$ take $\mathrm{h}=1$
b) Evaluate $\int_{0}^{1} x^{2} d x$ by Trapezoidal rule take $\mathrm{h}=0.5$.
c) Write Runge - Kutta second order formula for $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$.
d) Write the for $\mathrm{y}_{1}{ }^{(\mathrm{n}+1)}$ in Modified Euler's method.
e) Define Absolute error.
f) Find the first approximation $x_{1}$ to the root of $x^{3}-18=0$ by Newton Raphson method with $\mathrm{x}_{0}=2.5$
g) Simplify $\mathrm{E}^{2}(5 x)$ take $\mathrm{h}=1$ where E is shift operator.

Q2) a) Attempt any ONE of the following.
i) Write the rules for round - off the number to significant figure.
ii) Explain Euler's method to solve $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$
b) Attempt any ONE of the following
i) Find $\sqrt[3]{13}$ by Newton - Raphson method (Two iterations) with $x_{0}=2.5$
ii) Find $\log 3.7$ using Lagrange's interpolation formula

| $x$ | 3 | 3.5 | 4 |
| :--- | :---: | :---: | :---: |
| $\log x$ | 1.09861 | 1.25277 | 1.3863 |

Q3) a) Attempt any ONE of the following
i) Explain Taylor's series method to solve initial value problem
ii) Derive the formula for $\frac{d y}{d x}$ at $x=x_{0}$ in terms of $\Delta$.
b) Attempt any ONE of the following.
i) Find $y$ when $x=1$ by Runge -Kutta fourth order method given that

$$
\frac{d y}{d x}=\frac{y-x}{y+x}, \mathrm{y}(0)=1, \mathrm{~h}=1
$$

ii) Find the root of $x \mathrm{e}^{x}-2=0$ between 0.5 and 1 by Regula-Falsi method (Two iterations).

Q4) a) Attempt any ONE of the following.
i) Explain bisection method to find approximate root of $f(x)=0$.
ii) Derive Lagrange's interpolation formula.
b) Attempt any ONE of the following.
i) Evaluate $\int_{4}^{5.2} \log _{e} x \mathrm{~d} x$ by Simpson's $\frac{3}{8}$ rule with $\mathrm{h}=0.2$
ii) Find y (0.1) using Runge - Kutta second order method given that $\frac{d y}{d x}=x+y$ with $y(0)=1, \mathrm{~h}=0.1$

\author{

*     *         * 

}
$\square$

S.Y. B.Sc.

PHYSICS - I

## PHY-231 : Mathematical Methods in Physics

(2019 Pattern) (CBCS) (Semester - III) (Paper - I) (23121)
Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) Question 1 is compulsory.
2) Solve any three questions from Q2 to Q5.
3) Questions 2 to 5 carry equal marks.
4) Figures to the right indicate full marks.
5) Use of calculator is allowed.

Q1) Solve any five of the following:
a) If $z=x+i y$, then what is modulus of Z ?
b) Define partial differentiation equation.
c) Find the total differential of the function, $\mathrm{F}=f(x, y)=2 x y^{2}$.
d) State law of polygon of vectors.
e) If $\frac{d^{2} y}{d t^{2}}+w^{2} y=\mathrm{F}_{0} \sin q t$ then write its degree and order.
f) State theorems of differentiation.

Q2) Answer the following :
a) i) If $z=r(\cos \theta+\operatorname{isin} \theta)$ is a polar form of a complex number, then obtain the exporiential form of a complex number.
ii) Find area of a triangle having vertices at $\mathrm{P}(1,3,2), \mathrm{Q}(2,-1,1)$, $\mathrm{R}(-1,2,3)$.

OR
a) What is a scalar triple product and vector triple product. Show that the scalar triple product represents the volume of a parallelopiped.

