
UN UNIT-3

PL/SQL - Exceptions

. An exception is an error condition during a program execution. PL/SQL supports programmers
to catch such conditions using EXCEPTION block in the program and an appropriate action is
taken against the error condition. There are two types of exceptions −

 System-defined exceptions

 User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many
exceptions as you can handle. The default exception will be handled using WHEN others
THEN −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had
created and used in the previous chapters −

DECLARE

 c_id customers.id%type := 8;

 c_name customerS.Name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since
there is no customer with ID value 8 in our database, the program raises the run-time
exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal
database error, but exceptions can be raised explicitly by the programmer by using the
command RAISE. Following is the simple syntax for raising an exception −

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END;

You can use the above syntax in raising the Oracle standard exception or any user-defined
exception. In the next section, we will give you an example on raising a user-defined exception.
You can raise the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A
user-defined exception must be declared and then raised explicitly, using either a RAISE
statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE

 my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the
user enters an invalid ID, the exception invalid_idis raised.

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customerS.Name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is
violated by a program. For example, the predefined exception NO_DATA_FOUND is raised
when a SELECT INTO statement returns no rows. The following table lists few of the important
pre-defined exceptions −

Exception
Oracle

Error
SQLCODE Description

ACCESS_INTO_NULL 06530 -6530

It is raised when

a null object is

automatically

assigned a value.

CASE_NOT_FOUND 06592 -6592

It is raised when

none of the

choices in the

WHEN clause of

a CASE

statement is

selected, and

there is no ELSE

clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when

a program

attempts to

apply collection

methods other

than EXISTS to

an uninitialized

nested table or

varray, or the

program

attempts to

assign values to

the elements of

an uninitialized

nested table or

varray.

DUP_VAL_ON_INDEX 00001 -1

It is raised when

duplicate values

are attempted to

be stored in a

column with

unique index.

INVALID_CURSOR 01001 -1001

It is raised when

attempts are

made to make a

cursor operation

that is not

allowed, such as

closing an

unopened

cursor.

INVALID_NUMBER 01722 -1722

It is raised when

the conversion

of a character

string into a

number fails

because the

string does not

represent a valid

number.

LOGIN_DENIED 01017 -1017

It is raised when

a program

attempts to log

on to the

database with an

invalid username

or password.

NO_DATA_FOUND 01403 +100

It is raised when

a SELECT INTO

statement

returns no rows.

NOT_LOGGED_ON 01012 -1012

It is raised when

a database call is

issued without

being connected

to the database.

PROGRAM_ERROR 06501 -6501

It is raised when

PL/SQL has an

internal

problem.

ROWTYPE_MISMATCH 06504 -6504

It is raised when

a cursor fetches

value in a

variable having

incompatible

data type.

SELF_IS_NULL 30625 -30625

It is raised when

a member

method is

invoked, but the

instance of the

object type was

not initialized.

STORAGE_ERROR 06500 -6500

It is raised when

PL/SQL ran out

of memory or

memory was

corrupted.

TOO_MANY_ROWS 01422 -1422

It is raised when

a SELECT INTO

statement

returns more

than one row.

VALUE_ERROR 06502 -6502

It is raised when

an arithmetic,

conversion,

truncation, or

sizeconstraint

error occurs.

ZERO_DIVIDE 01476 1476

It is raised when

an attempt is

made to divide a

number by zero

 CURSORS

The Oracle engine uses a work area(context area) for its internal processing in order to execute
an SQL statement.This work area is private to SQL’s operations and is called cursor.

The data that is stored in the cursor is called Active Data Set.

 There are two types of cursors –depending upon the circumstances under which they are
opened.

 Implicit cursors

 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed,
when there is no explicit cursor for the statement. Programmers cannot control the implicit
cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is
associated with this statement. For INSERT operations, the cursor holds the data that needs to
be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be
affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always
has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL
cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed
for use with the FORALL statement. The following table provides the description of the most
used attributes −

S.No Attribute & Description

1

%FOUND

Returns TRUE if an INSERT, UPDATE,

or DELETE statement affected one or

more rows or a SELECT INTO

statement returned one or more rows.

Otherwise, it returns FALSE.

2

%NOTFOUND

The logical opposite of %FOUND. It

returns TRUE if an INSERT, UPDATE,

or DELETE statement affected no rows,

or a SELECT INTO statement returned

no rows. Otherwise, it returns FALSE.

3 %ISOPEN

Always returns FALSE for implicit

cursors, because Oracle closes the SQL

cursor automatically after executing its

associated SQL statement.

4

%ROWCOUNT

Returns the number of rows affected by

an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT

INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the
example.

Example

We will be using the CUSTOMERS table we had created and used in the previous chapters.

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program will update the table and increase the salary of each customer by 500
and use the SQL%ROWCOUNT attribute to determine the number of rows affected −

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

 IF sql%notfound THEN

 dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers selected ');

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been updated −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2500.00 |

| 2 | Khilan | 25 | Delhi | 2000.00 |

| 3 | kaushik | 23 | Kota | 2500.00 |

| 4 | Chaitali | 25 | Mumbai | 7000.00 |

| 5 | Hardik | 27 | Bhopal | 9000.00 |

| 6 | Komal | 22 | MP | 5000.00 |

+----+----------+-----+-----------+----------+

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created
on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For
example −

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows
returned by the SQL statement into it. For example, we will open the above defined cursor as
follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from
the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the
above-opened cursor as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE

 c_id customers.id%type;

 c_name customerS.No.ame%type;

 c_addr customers.address%type;

 CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_addr;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

 END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

PROCEDURES

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.
PL/SQL provides two kinds of subprograms −

 Functions − These subprograms return a single value; mainly used to compute and
return a value.

 Procedures − These subprograms do not return a value directly; mainly used to perform
an action.

This chapter is going to cover important aspects of a PL/SQL procedure. We will
discuss PL/SQL function in the next chapter.

Parts of a PL/SQL Subprogram

Each PL/SQL subprogram has a name, and may also have a parameter list. Like anonymous
PL/SQL blocks, the named blocks will also have the following three parts −

S.No Parts & Description

1

Declarative Part

It is an optional part. However, the

declarative part for a subprogram does

not start with the DECLARE keyword. It

contains declarations of types, cursors,

constants, variables, exceptions, and

nested subprograms. These items are

local to the subprogram and cease to

exist when the subprogram completes

execution.

2

Executable Part

This is a mandatory part and contains

statements that perform the designated

action.

3
Exception-handling

This is again an optional part. It contains

the code that handles run-time errors.

Creating a Procedure:

A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows the modification of an existing procedure.

 The optional parameter list contains name, mode and types of the
parameters. IN represents the value that will be passed from outside and OUT
represents the parameter that will be used to return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the
screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

 Using the EXECUTE keyword

 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

greetings;

END;

/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting
a procedure is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms

The following table lists out the parameter modes in PL/SQL subprograms −

S.No Parameter Mode & Description

1

IN

An IN parameter lets you pass a value to

the subprogram. It is a read-only

parameter. Inside the subprogram, an

IN parameter acts like a constant. It

cannot be assigned a value. You can pass

a constant, literal, initialized variable, or

expression as an IN parameter. You can

also initialize it to a default value;

however, in that case, it is omitted from

the subprogram call. It is the default

mode of parameter passing.

Parameters are passed by reference.

2

OUT

An OUT parameter returns a value to the

calling program. Inside the subprogram,

an OUT parameter acts like a variable.

You can change its value and reference

the value after assigning it. The actual

parameter must be variable and it is

passed by value.

3

IN OUT

An IN OUT parameter passes an initial

value to a subprogram and returns an

updated value to the caller. It can be

assigned a value and the value can be

read.

The actual parameter corresponding to

an IN OUT formal parameter must be a

variable, not a constant or an expression.

Formal parameter must be assigned a

value. Actual parameter is passed by

value.

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes two numbers using
the IN mode and returns their minimum using the OUT parameters.

DECLARE

a number;

b number;

c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

IF x < y THEN

z:= x;

ELSE

z:= y;

END IF;

END;

BEGIN

a:= 23;

b:= 45;

findMin(a, b, c);

dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows how we
can use the same parameter to accept a value and then return another result.

DECLARE

a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

x := x * x;

END;

BEGIN

a:= 23;

squareNum(a);

dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters

Actual parameters can be passed in three ways −

 Positional notation

 Named notation

 Mixed notation

Positional Notation

In positional notation, you can call the procedure as −

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the
second actual parameter is substituted for the second formal parameter, and so on. So, a is
substituted for x, b is substituted for y, c is substituted for z and d is substituted for m.

Named Notation

In named notation, the actual parameter is associated with the formal parameter using
the arrow symbol (=>). The procedure call will be like the following −

findMin(x => a, y => b, z => c, m => d);

Mixed Notation

In mixed notation, you can mix both notations in procedure call; however, the positional notation
should precede the named notation.

The following call is legal −

findMin(a, b, c, m => d);

However, this is not legal:

findMin(x => a, b, c, d);

.

