
 K.T.S.P.Madal’s

Hutatma Rajguru Mahavidyalaya, Rajgurunagar

Tal-Khed, Dist.-Pune 410505.

 TY.BSc (Computer Science)

 Semester-VI

Subject- Software Testing Tools

According to new CBCS syllabus w.e.f.2019-2020

Prof.S.V.Patole

Department of Computer Science

Hutatma Rajguru Mahavidyalaya,

Rajgurunagar.

 Unit 2. Test Cases for Simple Programs
Introduction

Software testing is known as a process for validating and verifying the working of a
software/application. It makes sure that the software is working without any errors, bugs, or
any other issues and gives the expected output to the user. The software testing process
isn’t limited to finding faults in the present software but also finding measures to upgrade
the software in various factors such as efficiency, usability, and accuracy. So, to test
software the software testing provides a particular format called a Test Case.

Basic Path Testing

Basis path testing is a technique of selecting the paths in the control flow graph, that

provide a basis set of execution paths through the program or module. Since this testing is

based on the control structure of the program, it requires complete knowledge of the

program’s structure. To design test cases using this technique, four steps are followed :

1. Construct the Control Flow Graph

2. Compute the Cyclomatic Complexity of the Graph

3. Identify the Independent Paths

4. Design Test cases from Independent Paths

Let’s understand each step one by one. 1. Control Flow Graph – A control flow graph (or

simply, flow graph) is a directed graph which represents the control structure of a program

or module. A control flow graph (V, E) has V number of nodes/vertices and E number of

edges in it. A control graph can also have :

 Junction Node – a node with more than one arrow entering it.

 Decision Node – a node with more than one arrow leaving it.

 Region – area bounded by edges and nodes (area outside the graph is also counted as a

region.).

https://www.geeksforgeeks.org/software-engineering-verification-and-validation/

 the notations used while constructing a flow graph :

 Sequential Statements –

 If – Then – Else –

 Do – While –

 While – Do –

 Switch – Case –

Cyclomatic Complexity – The cyclomatic complexity V(G) is said to be a measure of the
logical complexity of a program. It can be calculated using three different formulae :

1. Formula based on edges and nodes :
V(G) = e - n + 2*P

1. Where, e is number of edges, n is number of vertices, P is number of connected
components. For example, consider first graph given above,

where, e = 4, n = 4 and p = 1

So,

Cyclomatic complexity V(G)

= 4 - 4 + 2 * 1

= 2

1. Formula based on Decision Nodes :
V(G) = d + P

1. where, d is number of decision nodes, P is number of connected nodes. For example,
consider first graph given above,

where, d = 1 and p = 1

So,

Cyclomatic Complexity V(G)

= 1 + 1

= 2

1. Formula based on Regions :
V(G) = number of regions in the graph

1. For example, consider first graph given above,
Cyclomatic complexity V(G)

= 1 (for Region 1) + 1 (for Region 2)

= 2

Hence, using all the three above formulae, the cyclomatic complexity obtained remains
same. All these three formulae can be used to compute and verify the cyclomatic
complexity of the flow graph. Note –
1. For one function [e.g. Main() or Factorial()], only one flow graph is constructed. If in

a program, there are multiple functions, then a separate flow graph is constructed for
each one of them. Also, in the cyclomatic complexity formula, the value of ‘p’ is set
depending of the number of graphs present in total.

2. If a decision node has exactly two arrows leaving it, then it is counted as one decision
node. However, if there are more than 2 arrows leaving a decision node, it is computed
using this formula :

d = k - 1

1. Here, k is number of arrows leaving the decision node.
Independent Paths : An independent path in the control flow graph is the one which
introduces at least one new edge that has not been traversed before the path is defined. The
cyclomatic complexity gives the number of independent paths present in a flow graph. This
is because the cyclomatic complexity is used as an upper-bound for the number of tests that
should be executed in order to make sure that all the statements in the program have been
executed at least once. Consider first graph given above here the independent paths would
be 2 because number of independent paths is equal to the cyclomatic complexity. So, the
independent paths in above first given graph :
 Path 1:
A -> B

 Path 2:
C -> D

Control Structure Testing

Control structure testing is used to increase the coverage area by testing various control
structures present in the program. The different types of testing performed under control
structure testing are as follows-

1. Condition Testing
2. Data Flow Testing
3. Loop Testing

1. Condition Testing : Condition testing is a test cased design method, which ensures that
the logical condition and decision statements are free from errors. The errors present in
logical conditions can be incorrect boolean operators, missing parenthesis in a booleans
expression, error in relational operators, arithmetic expressions, and so on. The common
types of logical conditions that are tested using condition testing are-
1. A relation expression, like E1 op E2 where ‘E1’ and ‘E2’ are arithmetic expressions and

‘OP’ is an operator.
2. A simple condition like any relational expression preceded by a NOT (~) operator. For

example, (~E1) where ‘E1’ is an arithmetic expression and ‘a’ denotes NOT operator.
3. A compound condition consists of two or more simple conditions, Boolean operator,

and parenthesis. For example, (E1 & E2)|(E2 & E3) where E1, E2, E3 denote arithmetic
expression and ‘&’ and ‘|’ denote AND or OR operators.

4. A Boolean expression consists of operands and a Boolean operator like ‘AND’, OR,
NOT. For example, ‘A|B’ is a Boolean expression where ‘A’ and ‘B’ denote operands
and | denotes OR operator.

2. Data Flow Testing : The data flow test method chooses the test path of a program based
on the locations of the definitions and uses all the variables in the program. The data flow
test approach is depicted as follows suppose each statement in a program is assigned a
unique statement number and that theme function cannot modify its parameters or global
variables. For example, with S as its statement number.
DEF (S) = {X | Statement S has a definition of X}

USE (S) = {X | Statement S has a use of X}

If statement S is an if loop statement, them its DEF set is empty and its USE set depends on
the state of statement S. The definition of the variable X at statement S is called the line of
statement S’ if the statement is any way from S to statement S’ then there is no other
definition of X. A definition use (DU) chain of variable X has the form [X, S, S’], where S
and S’ denote statement numbers, X is in DEF(S) and USE(S’), and the definition of X in
statement S is line at statement S’. A simple data flow test approach requires that each DU
chain be covered at least once. This approach is known as the DU test approach. The DU
testing does not ensure coverage of all branches of a program. However, a branch is not
guaranteed to be covered by DU testing only in rare cases such as then in which the other
construct does not have any certainty of any variable in its later part and the other part is
not present. Data flow testing strategies are appropriate for choosing test paths of a program
containing nested if and loop statements.

3. Loop Testing : Loop testing is actually a white box testing technique. It specifically
focuses on the validity of loop construction. Following are the types of loops.

1. Simple Loop – The following set of test can be applied to simple loops, where the
maximum allowable number through the loop is n.
1. Skip the entire loop.
2. Traverse the loop only once.
3. Traverse the loop two times.
4. Make p passes through the loop where p<n.
5. Traverse the loop n-1, n, n+1 times.
6.

2. Concatenated Loops – If loops are not dependent on each other, contact loops can be
tested using the approach used in simple loops. if the loops are interdependent, the steps
are followed in nested loops.

3. Nested Loops – Loops within loops are called as nested loops. when testing nested
loops, the number of tested increases as level nesting increases. The following steps
for testing nested loops are as follows-

1. Start with inner loop. set all other loops to minimum values.
2. Conduct simple loop testing on inner loop.
3. Work outwards.
4. Continue until all loops tested.

4. Unstructured loops – This type of loops should be redesigned, whenever possible, to
reflect the use of unstructured the structured programming constructs.

	K.T.S.P.Madal’s
	Tal-Khed, Dist.-Pune 410505.
	According to new CBCS syllabus w.e.f.2019-2020
	Prof.S.V.Patole

	Control Structure Testing

