Q4) a) Attempt any one of the following:
i) Define Kernal of a linear transformation and if $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear transformation, then prove that Kernal of T is a subspace of V .
ii) Let V is a Finite dimensonal vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is linear transformation. Prove that T is injective if and only if $\operatorname{ker}(\mathrm{T})=\{0\}$.
b) Attempt any one of the following:
i) Find domain, codomain of T_{2} o T_{1} and compute $\left(\mathrm{T}_{2} \mathrm{o} \mathrm{T}_{1}\right)(x, y)$ if $\mathrm{T}_{1}(x, y)=(2 x,-3 y, x+y), \mathrm{T}_{2}(x, y, z)=(x,-y, x+y)$.
ii) Find the standard matrix for the linear transfrmation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by $\mathrm{T}(x, y, z)=(3 x-4 y+z, x+y-z, x+2 y+3 z)$.

$\cos 088080$

[5901]-202

S.Y. B.Sc. (Regular)
 MATHEMATICS

MT-242(A) : Vector Calculus (2019 CBCS Pattern) (Semester - IV) (24112A)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any Five of the following:
a) If $\bar{f}(t)=\left(t^{2}+1\right) \bar{i}+(4 t-3) \bar{j}+2 t^{2} \bar{k}$, then find $\lim _{t \rightarrow 2} \bar{f}(t)$.
b) If $\bar{r}(t)=\cos 2 t \bar{i}+3 \sin 2 t \bar{j}$ is the position of a particle in the $x y$-plane at time ' t ', then find the velocity vector at $t=0$.
c) If $\phi(x, y, z)=x y+y z+x z$, then find $|\nabla \phi|$ at the point $(1,1,1)$.
d) Find $\bar{k}-$ component of $\operatorname{curl} \overline{\mathrm{F}}$ for the vector field $\overline{\mathrm{F}}=(y \sin x) \bar{i}+(x \sin y) \bar{j}$ on the plane.
e) Give parametrization of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
f) Evaluate $\int_{c} x d s$, where c is the curve $x=t, y=t^{2}, 0 \leq t \leq 2$.
g) State Divergence Theorem in three dimensions.

Q2) a) Attempt any one of the following:
i) If $\bar{u}(t)$ and $\bar{v}(t)$ are differentiable vector functions of ' t ' then prove that $\frac{d}{d t}[\bar{u}(t) \times \bar{v}(t)]=\bar{u}(t) \times \frac{d}{d t} \bar{v}(t)+\frac{d}{d t} \bar{u}(t) \times \bar{v}(t)$.
ii) If $\bar{r}(t)$ is a differentiable vector function of ' t ' and length of $\bar{r}(t)$ is constant then show that $\bar{r}(t) \cdot \frac{d}{d t} \bar{r}(t)=0$.
b) Attempt any one of the following:
i) Find the work done by the force, $\overline{\mathrm{F}}=x y \bar{i}+y \bar{j}-y z \bar{k}$, along a curve, $\bar{r}(t)=t \bar{i}+t^{2} \bar{j}+t \bar{k}$, in moving an object from the point $t=0$ to $t=1$.
ii) Find unit tangent vector $\overline{\mathrm{T}}$, principal normal vector $\overline{\mathrm{N}}$ and curvature k for the curve in space $\bar{r}(t)=3 \sin t \bar{i}+3 \cos t \bar{j}+4 t \bar{k}$.

Q3) a) Attempt any one of the following:
i) State Green's Theorem in Normal Form and use it to find the outward flux for the vector field $\overline{\mathrm{F}}=\left(y^{2}-x^{2}\right) \bar{i}+\left(y^{2}+x^{2}\right) \bar{j}$, where c is the triangle bounded by $y=0, x=3$ and $y=x$.
ii) Let $\overline{\mathrm{F}}$ be a vector field and C be any closed curve in a region D . Prove that the vector field $\overline{\mathrm{F}}$ is conservative if and only if

$$
\oint_{c} \overline{\mathrm{~F}} \cdot d \bar{r}=0
$$

b) Attempt any one of the following:
i) Show that the differential form in the integral is exact and evaluate the integral $\int_{(0,0,0)}^{(1,2,3)} 2 x y d x+\left(x^{2}-z^{2}\right) d y-2 y z d z$.
ii) Use parametrization to find the flux of $\overline{\mathrm{F}}=y z \bar{i}+x \bar{j}-z^{2} \bar{k}$ outward through the parabolic cylinder $y=x^{2}, 0 \leq x \leq 1,0 \leq z \leq 4$.

Q4) a) Attempt any one of the following:
i) Define surface integral of a scalar function and evaluate $\iint_{s} y d \sigma$, where s is the portion of the cylinder $x^{2}+y^{2}=3$ that lies between $z=0$ and $z=6$.
ii) Define divergence of a vector function $\overline{\mathrm{F}}$ and determine whether the vector function, $\overline{\mathrm{F}}=x^{3} \bar{i}+x^{2} y \bar{j}+x^{2} z \bar{k}$ is solenoidal.
b) Attempt any one of the following:
i) Using Stoke's Theorem, evaluate $\iint_{s} \nabla \times \overline{\mathrm{F}} \cdot \bar{n} d s$ for the vector field $\overline{\mathrm{F}}=y \bar{i}-x \bar{j}$, over the hemisphere, $\mathrm{S}: x^{2}+y^{2}+z^{2}=9, z \geq 0$.
ii) Use the Divergence Theorem to evaluate $\iint_{s} \overline{\mathrm{~F}} \cdot \bar{n} d \sigma$, where $\overline{\mathrm{F}}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$ over the cube cut from the first octant by the planes $x=1, y=1, z=1$.

$\rightarrow \rightarrow \rightarrow$

