[6054]-214
S.Y. B.Sc. (Regular)

STATISTICS
ST-241 : Tests of Significance and Statistical Methods
(2019 Pattern) (CBCS) (Semester - IV) (Paper - I) (24171)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of statistical tables and calculator is allowed.
4) Symbols and abbreviations have their usual meaning.

Q1) Attempt each of the following:
A) In each of the following cases, choose the correct alternative: [1 each]
a) $100(1-\alpha) \%$ confidence interval for population mean μ when population variance is known
i) $\left(\overline{\mathrm{X}}-z_{\alpha / 2} \frac{\sigma^{2}}{n}, \overline{\mathrm{X}}+z_{\alpha / 2} \frac{\sigma^{2}}{n}\right)$
ii) $\left(\overline{\mathrm{X}}-z_{\alpha / 2} \frac{\sigma}{n}, \overline{\mathrm{X}}+z_{\alpha / 2} \frac{\sigma}{n}\right)$
iii) $\left(\overline{\mathrm{X}}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \overline{\mathrm{X}}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)$
iv) $\left(\overline{\mathrm{X}}-z_{\alpha / 2} \frac{\sigma^{2}}{\sqrt{n}}, \overline{\mathrm{X}}+z_{\alpha / 2} \frac{\sigma^{2}}{\sqrt{n}}\right)$
b) The following death rate is used for the comparison of the mortality of the two populations A and B
i) Crude Death Rate
ii) Specific Death Rate
iii) Infant Death Rate
iv) Standardized Death rate
c) The range in which partial correlation coefficient lies is
i) $-\infty$ to ∞
ii) 0 to 1
iii) -1 to 1
iv) 0 to ∞
B) In each of the following, state whether the given statement is true or false.
[1 each]
a) $\mathrm{X}_{1.23}$ is called as residual of order 2 .
b) Infant mortality rate is the number of deaths of children under 1 years of age per 1000 lives of birth.

Q2) Attempt any two of the following:
a) The mean height obtained from a sample of size 100 taken randomly from a population is 160 cm . If the standard deviation of height of population is 8 cm . Test whether the mean height is 163 cm . against the alternative that it is less than 163 cm .
b) Show that $\mathrm{R}_{1.23}^{2}=\mathrm{b}_{12.3} r_{12} \frac{\sigma_{2}}{\sigma_{1}}+b_{13.2} r_{13} \frac{\sigma_{3}}{\sigma_{1}}$
c) Customers arrive at a certain petrol pump in pune in a Poisson process with an average time of 5 minutes between arrivals. The time interval between services at the petrol pump follow exponential distribution and the mean time taken to service a vehicle is 2 minutes.
i) Find the probability that the pump is busy.
ii) What would be expected queue length?
iii) What is expected length of the system.
iv) Find the probability that there are 3 customers in the system.

Q3) Attempt any two of the following:
a) Explain the terms:
i) Type I error
ii) Type II error
iii) Level of significance
iv) Critical region
v) One tailed hypothesis
b) If $X_{1}=Y_{1}+Y_{2}, X_{2}=Y_{2}+Y_{3}, X_{3}=Y_{3}+Y_{1}$ where Y_{1}, Y_{2}, Y_{3} are mutually uncorrelated variables with mean zero and unit standard deviation. Find the multiple correlation coefficient between X_{1} and $\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)$.
c) Calculate Total Fertility rate (T.F.R.) and Gross Reproduction Rate (G.R.R) by considering proportion of female births as 0.48 , for the following data:

Age-group	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$
Population (in thousand)	16	26	21	18	11	11
Age-S.F.R.	60	285	322	260	125	10

Q4) Attempt any one of the following:
[10 each]
a) i) Explain briefly, the large sample test for testing $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ against $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$, where μ_{1} and μ_{2} are population means from which the two independent samples are drawn. It is assumed that the population variances are known.
ii) Explain the following terms:

Customer, calling population, waiting time and time spent in the system.
b) i) A random sample of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed that 19 and 5 defective bolts respectively. Is machine B better than A ?
ii) Define crude death rate and standardized death rate. Explain direct method of standardization.

$\cos 058080$

S.Y. B.Sc.

STATISTICS

ST-242 : Sampling Distribution and Exact Tests
 (2019 Pattern) (CBCS) (Semester - IV) (Paper - II) (24172)

Time: 2 Hours]
[Max. Marks : 35
Instructions to the candidates :

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of statistical tables and calculator is allowed.
4) Symbols and abbreviations have their usual meaning.

Q1) Attempt each of the following :
a) In each of the following cases, choose the correct alternative :[1 each]
i) Let $\mathrm{X} \rightarrow \mathrm{G}(2,3)$ then distribution of random variable $\mathrm{Y}=\frac{X}{2}$ is
A) $\mathrm{G}(2,3 / 2)$
B) $\mathrm{G}(1,3)$
C) $\mathrm{G}(4,3)$
D) $\mathrm{G}(1,3 / 2)$
ii) If mode of χ^{2} random variable is 8 then it's variance is :
A) 6
B) 10
C) 20
D) 16
iii) If $X \rightarrow F(5,5)$ then median of X is
A) 1
B) 2
C) 5
D) $3 / 7$
b) In each of the following, state whether the given statement is true or false :
i) The t-distribution is symmetric about 1 .
ii) For test based on t-distribution, the value of the test statistics cannot be negative.

Q2) Attempt any two of the following :
a) State and prove the additive property of gamma distribution, also state the distribution of sample mean $\overline{\mathrm{X}}$.
b) If a r.v.t. follows t -distribution with n degrees of freedom then find distribution of $\mathrm{Y}=\frac{1}{1+\frac{t^{2}}{n}}$.
c) Describe the test procedure for testing $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ against $\mathrm{H}_{0}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$.

Q3) Attempt any two of the following :
[5 each]
a) Show that mode of F-distribution with n_{1} and n_{2} d.f. is, $\frac{n_{2}\left(n_{1}-2\right)}{n_{1}\left(n_{2}+2\right)}, n_{1}>2$.
b) Define χ^{2} variate with n degrees of freedom. Find it's mean and variance.
c) Identify the distribution of a r.v.X if it's m.g.f is $M_{X}(t)=\left(1-\frac{t}{1 / 2}\right)^{-20}$ where $t<1 / 2$, also find the median and mode of X.

Q4) Attempt any one of the following:
a) i) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots \ldots . \mathrm{X}_{10}$ be independent and identically distributed $\mathrm{N}(20,20)$ variates. Calculate

$$
\mathrm{P}\left[\sum_{i=1}^{8}\left(X_{i}-20\right)^{2} \geq 190.48\right]
$$

ii) Explain paired t-test along with the assumptions made.
b) i) Let $\overline{\mathrm{X}}$ and S^{2} be the mean and variance of a random sample of size 25 from $\mathrm{N}(3,100)$ distribution.
Evaluate $\mathrm{P}\left(0<\overline{\mathrm{X}}<6,55.2<\mathrm{S}^{2}<145.6\right)$
ii) Let t_{25} follows Student's t -distribution with 25 degrees of freedom find ' k ' such that $\mathrm{P}\left(-k<t_{25}<k\right)=0.3$.
iii) State the inter-relations among normal, chi-square, t and f-distribution.

ㅁㅁ

