SEAT No. :

P978

[Total No. of Pages : 3

[6054]-214 S.Y. B.Sc. (Regular) STATISTICS

ST-241 : Tests of Significance and Statistical Methods (2019 Pattern) (CBCS) (Semester - IV) (Paper - I) (24171)

Time : 2 Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of statistical tables and calculator is allowed.
- 4) Symbols and abbreviations have their usual meaning.

Q1) Attempt each of the following:

- A) In each of the following cases, choose the correct alternative: [1 each]
 - a) $100(1-\alpha)\%$ confidence interval for population mean μ when population variance is known
 - i) $\left(\overline{\mathbf{X}} z_{\alpha/2} \frac{\sigma^2}{n}, \overline{\mathbf{X}} + z_{\alpha/2} \frac{\sigma^2}{n}\right)$
 - ii) $\left(\overline{\mathbf{X}} z_{\alpha/2}\frac{\sigma}{n}, \overline{\mathbf{X}} + z_{\alpha/2}\frac{\sigma}{n}\right)$
 - iii) $\left(\overline{\mathbf{X}} z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{\mathbf{X}} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$
 - iv) $\left(\overline{\mathbf{X}} z_{\alpha/2} \frac{\sigma^2}{\sqrt{n}}, \overline{\mathbf{X}} + z_{\alpha/2} \frac{\sigma^2}{\sqrt{n}}\right)$
 - b) The following death rate is used for the comparison of the mortality of the two populations A and B
 - i) Crude Death Rate ii) Specific Death Rate
 - iii) Infant Death Rate iv) Standardized Death rate

[Max. Marks : 35

c) The range in which partial correlation coefficient lies is

i)	$-\infty$ to ∞	ii)	0 to 1
iii)	-1 to 1	iv)	0 to ∞

- B) In each of the following, state whether the given statement is true or false. [1 each]
 - a) $X_{1,23}$ is called as residual of order 2.
 - b) Infant mortality rate is the number of deaths of children under 1 years of age per 1000 lives of birth.
- *Q2*) Attempt any two of the following:
 - a) The mean height obtained from a sample of size 100 taken randomly from a population is 160 cm. If the standard deviation of height of population is 8 cm. Test whether the mean height is 163 cm. against the alternative that it is less than 163 cm.
 - b) Show that $R_{1,23}^2 = b_{12,3} r_{12} \frac{\sigma_2}{\sigma_1} + b_{13,2} r_{13} \frac{\sigma_3}{\sigma_1}$
 - c) Customers arrive at a certain petrol pump in pune in a Poisson process with an average time of 5 minutes between arrivals. The time interval between services at the petrol pump follow exponential distribution and the mean time taken to service a vehicle is 2 minutes.
 - i) Find the probability that the pump is busy.
 - ii) What would be expected queue length?
 - iii) What is expected length of the system.
 - iv) Find the probability that there are 3 customers in the system.
- *Q3*) Attempt any two of the following:
 - a) Explain the terms:
 - i) Type I error
 - ii) Type II error
 - iii) Level of significance
 - iv) Critical region
 - v) One tailed hypothesis

[6054]-214

[5 each]

[5 each]

- b) If $X_1 = Y_1 + Y_2$, $X_2 = Y_2 + Y_3$, $X_3 = Y_3 + Y_1$ where Y_1, Y_2, Y_3 are mutually uncorrelated variables with mean zero and unit standard deviation. Find the multiple correlation coefficient between X_1 and (X_2, X_3) .
- c) Calculate Total Fertility rate (T.F.R.) and Gross Reproduction Rate (G.R.R) by considering proportion of female births as 0.48, for the following data:

Age-group	15-19	20-24	25-29	30-34	35-39	40-44
Population (in thousand)	16	26	21	18	11	11
Age-S.F.R.	60	285	322	260	125	10

Q4) Attempt any one of the following:

[10 each]

- a) i) Explain briefly, the large sample test for testing $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 \neq \mu_2$, where μ_1 and μ_2 are population means from which the two independent samples are drawn. It is assumed that the population variances are known. [6]
 - ii) Explain the following terms:

Customer, calling population, waiting time and time spent in the system. [4]

- b) i) A random sample of 200 bolts manufactured by machine A and 100 bolts manufactured by machine B showed that 19 and 5 defective bolts respectively. Is machine B better than A? [5]
 - ii) Define crude death rate and standardized death rate. Explain direct method of standardization. [5]

ઉલ્લ છે.છ

P-979

SEAT No. :

[Total No. of Pages : 2

[6054]-215 S.Y. B.Sc. STATISTICS

ST-242 : Sampling Distribution and Exact Tests (2019 Pattern) (CBCS) (Semester - IV) (Paper - II) (24172)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates :

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of statistical tables and calculator is allowed.
- 4) Symbols and abbreviations have their usual meaning.

Q1) Attempt each of the following :

a) In each of the following cases, choose the correct alternative :[1 each]

i) Let X \rightarrow G(2, 3) then distribution of random variable Y = $\frac{x}{2}$ is

- A) G(2, 3/2) B) G(1, 3)
- C) G(4, 3) D) G(1, 3/2)
- ii) If mode of χ^2 random variable is 8 then it's variance is :

A)	6	B)	10
C)	20	D)	16

iii) If $X \rightarrow F(5, 5)$ then median of X is

A)	1		B)	2

- C) 5 D) 3/7b) In each of the following, state whether the given statement is true or
 - false :
 - i) The t-distribution is symmetric about 1.
 - ii) For test based on t-distribution, the value of the test statistics cannot be negative.

[1 each]

- Q2) Attempt any two of the following :
 - a) State and prove the additive property of gamma distribution, also state the distribution of sample mean \overline{X} .
 - b) If a r.v.t. follows t-distribution with n degrees of freedom then find

distribution of
$$Y = \frac{1}{1 + \frac{t^2}{n}}$$
.

- c) Describe the test procedure for testing $H_0: \sigma_1^2 = \sigma_2^2$ against $H_0: \sigma_1^2 \neq \sigma_2^2$.
- Q3) Attempt any two of the following : [5 each]
 - a) Show that mode of F-distribution with n_1 and n_2 d.f. is, $\frac{n_2(n_1-2)}{n_1(n_2+2)}, n_1 > 2.$
 - b) Define χ^2 variate with n degrees of freedom. Find it's mean and variance.
 - c) Identify the distribution of a r.v.X if it's m.g.f is $M_{X}(t) = \left(1 - \frac{t}{1/2}\right)^{-20}$ where t < 1/2, also find the median and mode of X.
- Q4) Attempt any one of the following :
 - a) i) Let X₁, X₂, X₁₀ be independent and identically distributed N(20,20) variates. Calculate [5]

 $\mathbf{P}\!\left[\sum_{i=1}^{8} (X_i - 20)^2 \ge 190.48\right]$

- ii) Explain paired t-test along with the assumptions made. [5]
- b) i) Let \overline{X} and S² be the mean and variance of a random sample of size 25 from N(3, 100) distribution.

Evaluate
$$P(0 < \overline{X} < 6, 55.2 < S^2 < 145.6)$$
 [5]

- ii) Let t_{25} follows Student's t-distribution with 25 degrees of freedom find 'k' such that $P(-k < t_{25} < k) = 0.3$. [2]
- iii) State the inter-relations among normal, chi-square, t and f-distribution. [3]

2

[5 each]