P4812

SEAT No. :

[Total No. of Pages : 2

[5822]-415

S.Y.B.Sc.

STATISTICS

ST-242: Sampling Distribution and Exact Tests (24172) (2019 CBCS Pattern)(Semester-IV) (Paper -II)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of statistical tables and calculator is allowed.

Q1) Attempt each of the following:

- a) In each of the following cases, choose the correct alternative : [1 each]
 - i) Let $X \to G(1,3)$ then variance of X is

A)	3	B)	$\frac{1}{3}$
C)	1	D)	9

ii) Let $X \to \chi_6^2$ then which of the following is true?

A) $\mu_2' = 6$ B) $\mu_2' = 12$ D) $\mu_2' = 48$

iii) Let $X \to t_7$ then distribution of $Y = \frac{1}{X^2}$ is

A) $F_{1,1}$ B) $F_{1,7}$

C)
$$F_{7,7}$$
 D) $F_{7,7}$

- b) In each of the following, state whether the given statement is true or false: [1 each]
 - i) Let $X \to N(\mu, \sigma^2) \ \mu$ known, the test statistic for testing $H_0: \sigma^2 = \sigma_0^2$ Vs $H_1: \sigma^2 \neq \sigma_0^2$ follows chi-square distribution.
 - ii) Let $X \to t_{10}$ then the mode of X is 10.

- **Q2)** Attempt any two of the following:
 - a) Obtain moment generating function of chi square distribution with *n* degrees of freedom.
 - b) Derive an expression for rth raw moment of F- distribution with n_1 and n_2 degrees of freedom. Hence find mean of the distribution.
 - c) Describe the test procedure for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$.
- *Q3)* Attempt any **two** of the following:

[5 each]

- a) State and prove additive property of Gamma distribution.
- b) Let X and Y are independent chi square random variables with m and n degrees of freedom respectively, show that U = X + Y and $V = \frac{X}{X + Y}$ are independently distributed.
- c) Find $(2r)^{\text{th}}$ central moment (μ_{2r}) of *t* distribution with *n* degrees of freedom.
- **Q4)** Attempt any **one** of the following.
 - a) i) Let X_1, X_2, \dots, X_{10} be independent and identically distributed N(5,10) random variates. Calculate $P[\overline{X} \ge 4, \sum_{i=1}^{n} (X_i - 5)^2 \ge 72.67]$. [5]
 - ii) Explain paired t-test along with the assumptions made. Give one illustration in which this test can be used. [5]
 - b) i) A random sample of 10 boys has mean weight of 63.2 kg with standard deviation of 7 kg. Test whether mean population weight of boys is 60 kg.[Use $\alpha = 0.05$] [5]
 - ii) Show that median of $F_{n,n}$ is unity. [3]
 - iii) Let t_{12} follows Student's t-distribution with 12 degrees of freedom

find 'c' such that
$$P(-c < t_{12} < c) = 0.8.$$
 [2]

[5822]-415