Unit- 4: Chapter- Sec.8: 8.1 to 8.4, 1.8, 4.9.

Reference Books:

(1) K. Hoffman and R. Kunze, Linear Algebra, 2nd edition(2014), Prentice Hall of India, New Delhi

(2) Steven J. Leon, Linear Algebra with Applications, 4th edition(1994), Prentice Hall of India. New Delhi

(3) Vivek Sahai, Vikas Bist, Linear Algebra, 4th Reprint 2017, Narosa Publishing House, New Delhi

(4) Promode Kumar Saikia, Linear Algebra, 2009, Pearson, Delhi

(5) S. Lang, Introduction to Linear Algebra, 2nd edition,1986, Springer-Verlag, New York, Inc.

MT 242(A): Vector Calculus

Unit 1: Vector-Valued Functions

- 1.1 Curves in Space, Limits and Continuity, Derivatives and Motion, Differentiation Rules for Vector Function, Vector Functions of Constant Length.
- 1.2 Integrals of Vector Functions.
- 1.3 Arc Length along a Space Curve, Speed on a Smooth Curve, Unit Tangent Vector.
- 1.4 Curvature of a Plane Curve, Circle of Curvature for Plane Curves, Curvature and Normal Vectors for a Space Curve.

Unit 2: Integrals

2.1 Line Integral of Scalar Functions, Additivity, Line integral in the Plane.

- 2.2 Vector Fields, Gradient Fields, Line Integral of Vector Fields, Line Integrals with respect to dx, dy, dz .
- 2.3 Work done by a Force over a Curve in Space, Flow Integrals and Circulation for Velocity Fields, Flow across the Simple Closed Plane Curve.
- 2.4 Path Independence, Conservative and Potential Functions.
- 2.5 Divergence, Two forms for Green's Theorem, Green's Theorem in the Plane (Proof for special regions),

Unit 3: Surface Integrals

- 3.1 Parameterizations of Surfaces, Implicit surfaces.
- 3.2 Surface integrals, Orientation of Surfaces.
- 3.3 Surface Integrals of Vector Fields.

Unit 4: Applications of Integrals

4.1 The Curl Vector Field, Stokes' Theorem(without proof), Conservative Fields and Stokes' Theorem.

[12 Lectures]

_ . . _ _ _

[08 Lectures]

[08 Lectures]

[08 lectures]

- 4.2 Divergence in three Dimensions, Divergence Theorem (without proof).
- 4.3 Unifying the Integral Theorems.

Text Book:

- Thomas' Calculus (14th Edition) by Hass, Heil, Weir, Pearson Indian Education Services Pvt. Ltd.
 - Unit 1: Chapter 13: Sec- 13.1, 13.2, 13.3, 13.4
 - Unit 2: Chapter 16: Sec-16.1, 16.2, 16.3, 16.4
 - Unit 3: Chapter 16: Sec- 16.5, 16.6
 - Unit 4: Chapter 16: Sec- 16.7, 16.8

Reference books:

(1) Basic Multivariable Calculus by J.E.Mardson, A.J.Tromba, A. Weinstein, Sppriger Verlag (Indian Edition)

- (2) Advanced Calculus by M.R. Spiegel, Schaum Series.
- (3) Advanced Calculus (IInd Edition) byD.V. Widder, Prentice Hall of India, New Delhi(1944).
- (4) Advanced Calculus by John M. H. Olmsted, Eurasia Publishing House, New Delhi(1970)
- (5) Calculus Vol. II (IInd Edition) by T.M. Apostol, John Wiley, New York (1967).

MT-242(B): Dynamical Systems

Unit 1: Eigenvalues and Eigenvectors	[08 Lectures]
1.1 Eigenvalues and Eigenvectors	
1.2 Diagonalisation(matrices with real and distinct eigenvalues)	
Unit 2: First-Order Equations and Planar Linear Systems	[12 Lectures]
2.1 The Simplest Example	
2.2 The Logistic Population Model	
2.3 Second-Order Differential Equations	
2.4 Planar Systems	
2.5 Preliminaries from Algebra	
2.6 Planar Linear Systems	
2.7 Eigenvalues and Eigenvectors	
2.8 Solving Linear Systems	
2.9 The Linearity Principle.	
Unit 3: Phase Portraits for Planar Systems	[08 Lectures]
3.1 Real Distinct Eigenvalues	
3.2 Complex Eigenvalues	
3.3 Repeated Eigenvalues	
3.4 Changing Coordinates	

Unit 4: Classification of Planar Systems and Exponential of a matrix [08 Lectures]