
 K.T.S.P.Madal’s

Hutatma Rajguru Mahavidyalaya, Rajgurunagar

Tal-Khed, Dist.-Pune 410505.

 TY.BSc (Computer Science)

 Semester-VI

Subject- Web Technologies II

According to new CBCS syllabus w.e.f.2019-2020

Prof.S.V.Patole

Department of Computer Science

Hutatma Rajguru Mahavidyalaya,

Rajgurunagar.

Chapter 5. PHP Framework Codelgniter

Codelgniter- Overview, Installing Codelgniter

CodeIgniter is a powerful PHP framework with a very small footprint, built for developers
who need a simple and elegant toolkit to create full-featured web applications. CodeIgniter
was created by EllisLab, and is now a project of the British Columbia Institute of
Technology.

Codelgniter Features:

o Free to use

It is licensed under MIT license, so it is free to use.

o Follows MVC Pattern

It uses Model-View-Controller which basically separates logic and presentation parts.
Request comes to controller, database action is performed through model and output
is displayed through views.

But in normal PHP scripting, every page represents MVC which increases
complexity.

o Light weight

It is extremely light-weighted. CodeIgniter core system requires very small library,
other libraries may be added upon dynamic request based upon your needs. That is
why it is quite fast and light weighted.

o Generate SEO friendly URLs

URLs generated by CodeIgniter are search-engine friendly and clean. It uses a
segment based approach rather than standard query based approach.

CodeIgniter Installation

Follow given steps to install CodeIgniter:

1) Download CodeIgniter from its official website.

Download current version of CodeIgniter from its official website

https://www.codeigniter.com

2) Unzip CodeIgniter package.

Downloaded CodeIgniter will be in zip format. Copy it and place it in your htdocs
folder. Unzip and rename it. We are naming it as CodeIgniter.

3) CodeIgniter user guide

On browser type localhost/CodeIgniter/ (after localhost type name of your
unzipped folder). If the above snapshot page appears then it means your file is
successfully installed.

4) Set the base URL in application/config/config.php file with any text editor.

5) You need to establish the connectivity to your database. Go to the path
application/config/database.php file.

Look at the above snapshot, fill the details about your database like hostname,
username, password and database name.

codeigniter mvc architecture

CodeIgniter is based on the Model-View-Controller (MVC) development pattern. MVC is
a software approach that separates application logic from presentation. In practice, it permits
your web pages to contain minimal scripting since the presentation is separate from the PHP
scripting.

 The Model represents your data structures. Typically, your model classes will contain
functions that help you retrieve, insert and update information in your database.

 The View is information that is being presented to a user. A View will normally be a
web page, but in CodeIgniter, a view can also be a page fragment like a header or
footer. It can also be an RSS page, or any other type of “page”.

 The Controller serves as an intermediary between the Model, the View, and any
other resources needed to process the HTTP request and generate a web page.

Basic concept of codelgniter Libraries

The essential part of a CodeIgniter framework is its libraries. It provides a rich set of
libraries, which indirectly increase the speed of developing an application. The system library
is located at system/libraries. All we need to do is to load the library that we want to use. The
library can be loaded as shown below −

$this->load->library('class name');
Where class name is the name of the library that we want to load. If we want to load multiple
libraries, then we can simply pass an array as argument to library() function as shown below
$this->load->library(array('email', 'table'));

Library Classes
The library classes are located in system/libraries. Each class has various functions to
simplify the developing work. Following table shows the names of the library class and its
description.
Given below are the most commonly used Library Classes.

Creating Libraries
CodeIgniter has rich set of libraries, which you can find in system/libraries folder but
CodeIgniter is not just limited to system libraries, you can create your own libraries too,
which can be stored in application/libraries folder. You can create libraries in three ways.

 Create new library
 Extend the native library
 Replace the native library

Create New Library

While creating new library one should keep in mind, the following things −

 The name of the file must start with a capital letter e.g. Mylibrary.php
 The class name must start with a capital letter e.g. class Mylibrary
 The name of the class and name of the file must match.

Mylibrary.php
<?php if (! defined('BASEPATH')) exit('No direct script access allowed');

 class Mylibrary {

 public function some_function() {
 }
 }

/* End of file Mylibrary.php */
Loading the Custom Library

The above library can be loaded by simply executing the following line in your controller.

$this->load->library(‘mylibrary’);

mylibrary is the name of your library and you can write it in lowercase as well as uppercase
letters. Use the name of the library without “.php” extension. After loading the library, you
can also call the function of that class as shown below.

$this->mylibrary->some_function();

Extend the Native Library

Sometimes, you may need to add your own functionality to the library provided by
CodeIgniter. CodeIgniter provides facility by which you can extend the native library and add
your own functions. To achieve this, you must extend the class of native library class. For
example if you want to extend the Email library then it can be done as shown below −

Class MY_Email extends CI_Email {
}

Here, in the above example, MY_Email class is extending the native library’s email class
CI_Email. This library can be loaded by the standard way of loading email library. Save the
above code in file My_Email.php

Replace the Native Library
In some situations, you do not want to use the native library the way it works and want to
replace it with your own way. This can be done by replacing the native library. To achieve
this, you just need to give the same class name as it is named in native library. For example,
if you want to replace the Email class, then use the code as shown below. Save your file
name with Email.php and give a class name to CI_Email.
Email.php
Class CI_Email {
}

Helper Function:

Helpers are the reusable code in codeignitor like libraries. The only difference is that
libraries are collection of classes whereas helper is defined as individual independent set of
functions. Helper functions need to be loaded before using it. We can find all the helpers in
codeignitor documentation Codeignitor Helpers and that can be used depends on kind of
requirement.
Create a controller users.php and then we can use below code to use helper.

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

class Users extends CI_Controller {

public function index() {

// Load form helper

$this->load->helper('form');

}

}

?>

If we need to load multiple helpers, we can create an array and then we can define all the
helper’s name in that array.

$this->load->helper(array('form', 'email', 'url'));

https://www.codeigniter.com/userguide3/helpers/index.html

Custom Helpers: Codeignitor has already a lot of built-in helpers but if we need to create a
function which is not in the helper then we can create our own custom helper and use it in the
same way like inbuilt helpers. Inbuilt helpers are available in system folder but custom helper
needs to be created in application/helpers folder. Create a file abc_helper.php in
application/helpers folder. Below is the example of creating functionality in our custom
helper.

<?php

 function test() {

 echo "Custom helper for codeignitor";

 }

?>

Custom helpers can be used just like inbuilt helpers in the controller. So in
our users.php controller use the code below to check this.
Controller: users.php

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

class Users extends CI_Controller {

 public function index() {

 // Load custom helper

 $this->load->helper('abc');

 test();

 }

 }

?

Output:
Custom helper for codeignitor

Working with Database:

Like any other framework, we need to interact with the database very often and CodeIgniter
makes this job easy for us. It provides rich set of functionalities to interact with database.

Connecting to a Database

We can connect to database in the following two way −

 Automatic Connecting − Automatic connection can be done by using the file
application/config/autoload.php. Automatic connection will load the database for each
and every page. We just need to add the database library as shown below −

$autoload['libraries'] = array(‘database’);
 Manual Connecting − If you want database connectivity for only some of the pages,

then we can go for manual connecting. We can connect to database manually by
adding the following line in any class.

$this->load->database();

Here, we are not passing any argument because everything is set in the database config file
application/config/database.php

Inserting a Record

To insert a record in the database, the insert() function is used as shown in the following table

Syntax insert([$table = ''[, $set = NULL[, $escape = NULL]]])

Parameters
 $table (string) − Table name
 $set (array) − An associative array of field/value pairs

Returns TRUE on success, FALSE on failure

Return Type Bool

The following example shows how to insert a record in stud table. The $data is an array in
which we have set the data and to insert this data to the table stud, we just need to pass this
array to the insert function in the 2nd argument.
$data = array(
 'roll_no' => ‘1’,
 'name' => ‘Virat’
);

$this->db->insert("stud", $data);

Updating a Record
To update a record in the database, the update() function is used along
with set() and where() functions as shown in the tables below. The set() function will set the
data to be updated.

Syntax set($key[, $value = ''[, $escape = NULL]])

Parameters
 $key (mixed) − Field name, or an array of field/value pairs
 $value (string) − Field value, if $key is a single field
 $escape (bool) − Whether to escape values and identifiers

Returns CI_DB_query_builder instance (method chaining)

Return Type CI_DB_query_builder

The where() function will decide which record to update.

Syntax where($key[, $value = NULL[, $escape = NULL]])

Parameters
 $key (mixed) − Name of field to compare, or associative

array
 $value (mixed) − If a single key, compared to this value
 $escape (bool) − Whether to escape values and identifiers

Returns DB_query_builder instance

Return Type Object

Finally, the update() function will update data in the database.

Syntax
update([$table = ''[, $set = NULL[, $where = NULL[, $limit =
NULL]]]])

Parameters
 $table (string) − Table name
 $set (array) − An associative array of field/value pairs
 $where (string) − The WHERE clause
 $limit (int) − The LIMIT clause

Returns TRUE on success, FALSE on failure

Return Type Bool

$data = array(
 'roll_no' => ‘1’,
 'name' => ‘Virat’
);

$this->db->set($data);
$this->db->where("roll_no", ‘1’);
$this->db->update("stud", $data);

Deleting a Record

To delete a record in the database, the delete() function is used as shown in the following
table −

Syntax
delete([$table = ''[, $where = ''[, $limit = NULL[, $reset_data =
TRUE]]]])

Parameters

 $table (mixed) − The table(s) to delete from; string or array
 $where (string) − The WHERE clause
 $limit (int) − The LIMIT clause
 $reset_data (bool) − TRUE to reset the query “write”

clause

Returns
CI_DB_query_builder instance (method chaining) or FALSE on
failure

Return Type Mixed

Use the following code to to delete a record in the stud table. The first argument indicates the
name of the table to delete record and the second argument decides which record to delete.
$this->db->delete("stud", "roll_no = 1");

Selecting a Record
To select a record in the database, the get function is used, as shown in the following table −

Syntax get([$table = ''[, $limit = NULL[, $offset = NULL]]])

Parameters
 $table (string) − The table to query array
 $limit (int) − The LIMIT clause
 $offset (int) − The OFFSET clause

Returns CI_DB_result instance (method chaining)

Return Type CI_DB_result

Use the following code to get all the records from the database. The first statement fetches all
the records from “stud” table and returns the object, which will be stored in $query object.
The second statement calls the result() function with $query object to get all the records as
array.
$query = $this->db->get("stud");
$data['records'] = $query->result();

Closing a Connection

Database connection can be closed manually, by executing the following code −

$this->db->close();

Example
Create a controller class called Stud_controller.php and save it
at application/controller/Stud_controller.php
Here is a complete example, wherein all of the above-mentioned operations are performed.
Before executing the following example, create a database and table as instructed at the
starting of this chapter and make necessary changes in the database config file stored
at application/config/database.php
<?php
 class Stud_controller extends CI_Controller {

 function __construct() {
 parent::__construct();
 $this->load->helper('url');
 $this->load->database();
 }

 public function index() {
 $query = $this->db->get("stud");
 $data['records'] = $query->result();

 $this->load->helper('url');
 $this->load->view('Stud_view',$data);
 }

 public function add_student_view() {
 $this->load->helper('form');
 $this->load->view('Stud_add');
 }

 public function add_student() {
 $this->load->model('Stud_Model');

 $data = array(
 'roll_no' => $this->input->post('roll_no'),
 'name' => $this->input->post('name')
);

 $this->Stud_Model->insert($data);

 $query = $this->db->get("stud");
 $data['records'] = $query->result();
 $this->load->view('Stud_view',$data);
 }

 public function update_student_view() {
 $this->load->helper('form');
 $roll_no = $this->uri->segment('3');
 $query = $this->db->get_where("stud",array("roll_no"=>$roll_no));
 $data['records'] = $query->result();
 $data['old_roll_no'] = $roll_no;
 $this->load->view('Stud_edit',$data);
 }

 public function update_student(){
 $this->load->model('Stud_Model');

 $data = array(
 'roll_no' => $this->input->post('roll_no'),
 'name' => $this->input->post('name')
);

 $old_roll_no = $this->input->post('old_roll_no');
 $this->Stud_Model->update($data,$old_roll_no);

 $query = $this->db->get("stud");
 $data['records'] = $query->result();
 $this->load->view('Stud_view',$data);
 }

 public function delete_student() {
 $this->load->model('Stud_Model');
 $roll_no = $this->uri->segment('3');
 $this->Stud_Model->delete($roll_no);

 $query = $this->db->get("stud");
 $data['records'] = $query->result();
 $this->load->view('Stud_view',$data);
 }
 }
?>
Create a model class called Stud_Model.php and save it
in application/models/Stud_Model.php
<?php

 class Stud_Model extends CI_Model {

 function __construct() {
 parent::__construct();
 }

 public function insert($data) {
 if ($this->db->insert("stud", $data)) {
 return true;
 }
 }

 public function delete($roll_no) {
 if ($this->db->delete("stud", "roll_no = ".$roll_no)) {
 return true;
 }
 }

 public function update($data,$old_roll_no) {
 $this->db->set($data);
 $this->db->where("roll_no", $old_roll_no);
 $this->db->update("stud", $data);
 }
 }
?>
Create a view file called Stud_add.php and save it in application/views/Stud_add.php
<!DOCTYPE html>
<html lang = "en">

 <head>
 <meta charset = "utf-8">
 <title>Students Example</title>
 </head>
 <body>
 <?php
 echo form_open('Stud_controller/add_student');
 echo form_label('Roll No.');
 echo form_input(array('id'=>'roll_no','name'=>'roll_no'));
 echo "
";

 echo form_label('Name');
 echo form_input(array('id'=>'name','name'=>'name'));
 echo "
";

 echo form_submit(array('id'=>'submit','value'=>'Add'));
 echo form_close();
 ?>
 </body>
</html>
Create a view file called Stud_edit.php and save it in application/views/Stud_edit.php

<!DOCTYPE html>
<html lang = "en">

 <head>
 <meta charset = "utf-8">
 <title>Students Example</title>
 </head>

 <body>
 <form method = "" action = "">

 <?php
 echo form_open('Stud_controller/update_student');
 echo form_hidden('old_roll_no',$old_roll_no);
 echo form_label('Roll No.');
 echo form_input(array('id'⇒'roll_no',
 'name'⇒'roll_no','value'⇒$records[0]→roll_no));
 echo "
 ";

 echo form_label('Name');
 echo form_input(array('id'⇒'name','name'⇒'name',
 'value'⇒$records[0]→name));
 echo "
 ";

 echo form_submit(array('id'⇒'sub mit','value'⇒'Edit'));
 echo form_close();
 ?>

 </form>
 </body>

</html>
Create a view file called Stud_view.php and save it in application/views/Stud_view.php
<!DOCTYPE html>
<html lang = "en">

 <head>
 <meta charset = "utf-8">
 <title>Students Example</title>
 </head>

 <body>
 <a href = "<?php echo base_url(); ?>
 index.php/stud/add_view">Add

 <table border = "1">
 <?php
 $i = 1;

 echo "<tr>";
 echo "<td>Sr#</td>";
 echo "<td>Roll No.</td>";
 echo "<td>Name</td>";
 echo "<td>Edit</td>";
 echo "<td>Delete</td>";
 echo "<tr>";

 foreach($records as $r) {
 echo "<tr>";
 echo "<td>".$i++."</td>";
 echo "<td>".$r->roll_no."</td>";
 echo "<td>".$r->name."</td>";
 echo "<td><a href = '".base_url()."index.php/stud/edit/"
 .$r->roll_no."'>Edit</td>";
 echo "<td><a href = '".base_url()."index.php/stud/delete/"
 .$r->roll_no."'>Delete</td>";
 echo "<tr>";
 }
 ?>
 </table>

 </body>

</html>

Make the following change in the route file at application/config/routes.php and add the
following line at the end of file.
$route['stud'] = "Stud_controller";
$route['stud/add'] = 'Stud_controller/add_student';
$route['stud/add_view'] = 'Stud_controller/add_student_view';
$route['stud/edit/(\d+)'] = 'Stud_controller/update_student_view/$1';
$route['stud/delete/(\d+)'] = 'Stud_controller/delete_student/$1';

Cookies management in CodeIgniter

Cookie is a small piece of data sent from web server to store on client’s computer.
CodeIgniter has one helper called “Cookie Helper” for cookie management.

Syntax
set_cookie($name[, $value = ''[, $expire = ''[, $domain = ''[, $path
= '/'[, $prefix = ''[, $secure = FALSE[, $httponly = FALSE]]]]]]]])

Parameters $name (mixed) − Cookie name or associative array of all of
the parameters available to this function

 $value (string) − Cookie value

 $expire (int) − Number of seconds until expiration
 $domain (string) − Cookie domain

(usually: .yourdomain.com)
 $path (string) − Cookie path
 $prefix (string) − Cookie name prefix
 $secure (bool) − Whether to only send the cookie through

HTTPS
 $httponly (bool) − Whether to hide the cookie from

JavaScript

Return Type Void

In the set_cookie() function, we can pass all the values using two ways. In the first way, only
array can be passed and in the second way, individual parameters can also be passed.

Syntax get_cookie($index[, $xss_clean = NULL]])

Parameters
 $index (string) − Cookie name
 $xss_clean (bool) − Whether to apply XSS filtering to the

returned value

Return The cookie value or NULL if not found

Return Type Mixed

The get_cookie() function is used to get the cookie that has been set using the set_cookie()
function.

Syntax delete_cookie($name[, $domain = ''[, $path = '/'[, $prefix = '']]]])

Parameters

 $name (string) − Cookie name
 $domain (string) − Cookie domain

(usually: .yourdomain.com)
 $path (string) − Cookie path
 $prefix (string) − Cookie name prefix

Return Type void

The delete_cookie() function is used to delete the cookie().

Example
Create a controller called Cookie_controller.php and save it
at application/controller/Cookie_controller.php
<?php
 class Cookie_controller extends CI_Controller {

 function __construct() {
 parent::__construct();

 $this->load->helper(array('cookie', 'url'));
 }

 public function index() {
 set_cookie('cookie_name','cookie_value','3600');
 $this->load->view('Cookie_view');
 }

 public function display_cookie() {
 echo get_cookie('cookie_name');
 $this->load->view('Cookie_view');
 }

 public function deletecookie() {
 delete_cookie('cookie_name');
 redirect('cookie/display');
 }

 }
?>
Create a view file called Cookie_view.php and save it
at application/views/Cookie_view.php
<!DOCTYPE html>
<html lang = "en">

 <head>
 <meta charset = "utf-8">
 <title>CodeIgniter View Example</title>
 </head>

 <body>
 Click Here to view the cookie.

 Click Here to delete the cookie.
 </body>

</html>

Change the routes.php file in application/config/routes.php to add route for the above
controller and add the following line at the end of the file.

$route['cookie'] = "Cookie_controller";
$route['cookie/display'] = "Cookie_controller/display_cookie";
$route['cookie/delete'] = "Cookie_controller/deletecookie";

After that, you can execute the following URL in the browser to execute the example.

http://yoursite.com/index.php/cookie

It will produce an output as shown in the following screenshot.

	K.T.S.P.Madal’s
	Tal-Khed, Dist.-Pune 410505.
	According to new CBCS syllabus w.e.f.2019-2020
	Prof.S.V.Patole

	CodeIgniter Installation
	Library Classes
	Creating Libraries
	Create New Library
	Extend the Native Library
	Replace the Native Library

	Connecting to a Database
	Inserting a Record
	Updating a Record
	Deleting a Record
	Selecting a Record
	Closing a Connection
	Example
	Example

