SEAT No. : \square
[Total No. of Pages : 2

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following.
a) Find g.c.d. of 35 and 49 .
b) Define equivalence relation on z.
c) Let $f: \mathrm{R} \rightarrow \mathrm{R}, g: \mathrm{R} \rightarrow \mathrm{R}$ defined as $f(x)=x+1$ and $g(x)=x^{2}$, find fog.
d) If w is a cube root of unity then find the value of $1+w+w^{2}$.
e) $\operatorname{Is~}_{1}=\{(1,1),(1,2),(2,2),(3,3),(4,4),(2,1),(2,3)\}$ reflexive relation on the set $A=\{1,2,3,4\}$? Justify?
f) Find the value of $\overline{100}$ in Z_{3}.
g) Find the modulus of $z=1+\sqrt{3} \hat{z}$.

Q2) A) Attempt any one of the following.
i) State and prove De-Moivre's theorem for an integer indices.
ii) Prove that there are n distinct residue classes modulo n in integer.
B) Attempt any one of the following.
a) Find the g.c.d. ' d ' of integers 357 and 2210 and express $d=2210$ $x+357 y$ for some $x, y \in z$.
b) Find the remainder of 7^{486} when divided by 13 .

Q3) A) Attempt any one of the following.
a) Prove that every partition of non empty set X defines an equivalence relation on X .
b) Prove that any two equivalence classes are either identical or disjoint.
B) Attempt any one of the following.
[5]
a) If a, b, c are integers such that $a \mid b c$ and $(a, b)=1$ then show that a|c.
b) Which elements of z_{6} satisfies $x^{2}=x$?

Q4) A) Attempt any one of the following.
a) Let $z_{1}, z_{2} \in c$ then prove that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
b) State and prove Euclid's lemma.
B) Attempt any one of the following.
a) Find the expression for $\cos ^{5} \theta$ in terms of cosine of multiple of θ.
b) Express $z=1+i$ in polar form.

010

