Total No. of Questions : 4]

P4674

SEAT No. :

[Total No. of Pages : 2

[5822]-101 F.Y.B.Sc. MATHEMATICS MT-111 : Algebra (2019 Pattern) (Semester - I) (11111)

Time : 2 Hours] [Max. Marks : 35] Instructions to the candidates: *1*) All questions are compulsory. 2) Figures to the right indicate full marks. Q1) Attempt any five of the following. [5] Find g.c.d. of 35 and 49. a) b) Define equivalence relation on *z*. Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$ defined as f(x) = x + 1 and $g(x) = x^2$, find fog. c) If w is a cube root of unity then find the value of $1 + w + w^2$. d) Is $R_1 = \{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (2, 1), (2, 3)\}$ reflexive relation e) on the set $A = \{1, 2, 3, 4\}$? Justify? Find the value of $\overline{100}$ in \mathbb{Z}_3 . f)

- g) Find the modulus of $z = 1 + \sqrt{3}\hat{z}$.
- **Q2**) A) Attempt any one of the following.
 - i) State and prove De-Moivre's theorem for an integer indices.
 - ii) Prove that there are n distinct residue classes modulo n in integer.

P.T.O.

[5]

- B) Attempt any one of the following.
 - a) Find the g.c.d. 'd' of integers 357 and 2210 and express d = 2210x + 357y for some $x, y \in z$.
 - b) Find the remainder of 7^{486} when divided by 13.
- Q3) A) Attempt any one of the following. [5]
 - a) Prove that every partition of non empty set X defines an equivalence relation on X.
 - b) Prove that any two equivalence classes are either identical or disjoint.
 - B) Attempt any one of the following. [5]
 - a) If a, b, c are integers such that a|bc and (a, b) = 1 then show that a|c.
 - b) Which elements of z_6 satisfies $x^2 = x$?
- Q4) A) Attempt any one of the following.
 - a) Let $z_1, z_2 \in c$ then prove that $|z_1 + z_2| \le |z_1| + |z_2|$
 - b) State and prove Euclid's lemma.
 - B) Attempt any one of the following. [5]
 - a) Find the expression for $\cos^5\theta$ in terms of cosine of multiple of θ .
 - b) Express z = 1 + i in polar form.

\odot \odot \odot

2

[5]