\square

MATHEMATICS

MT-231 : Calculus of Several Variables

(2019 Pattern) (Semester - III) (Credit System) (Paper-I) (23111)

Time : 2 Hours]

[Max. Marks: 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following.
a) Find the domain and range of $g(x, y)=\sqrt{g-x^{2}-y^{2}}$.
b) Where is the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

continuous?
c) Find $\frac{\partial z}{\partial x}$ if $x^{3}+y^{3}+z^{3}+6 x y z=1$.
d) Find the critical point of $f(x, y)=x^{2}+y^{2}-2 x-6 y+14$.
e) Write the condition for a critical point (a, b) of a function $f(x, y)$ to be a saddle point.
f) Evaluate

$$
\int_{0}^{1} \int_{0}^{3} e^{x+3 y} d x d y
$$

g) Find the Jacobian of the transformation $x=5 u-v, y=u+3 v$.

Q2) a) Attempt any one of the following.
i) If $f(x, y)$ is a function of two variables, write the formulas for $f_{x}(x, y), f_{y}(x, y), f_{x x}(x, y), f_{x y}(x, y)$ and $f_{y y}(x, y)$.
ii) State clairaut's theorem. Write laplace's equation in two dimension. Give an example of a function of two variables that satisfies laplace's equation.
b) Attempt any one of the following.
i) Evaluate

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

ii) Verify that the function $u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is a solution of the three dimensional Laplace equation.

Q3) a) Attempt any one of the following.
i) If $f(x, y)$ is a homogeneous function of degree n that has continuous second order partial derivatives, then show that

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=n f(x, y) .
$$

ii) Explain the second derivative test to classify the critical points of a function of two variables into extreme points and saddle point.
b) Attempt any one of the following.
i) If $u=x^{4} y+y^{2} z^{3}$, where $x=\operatorname{rse}^{t}, y=\mathrm{rs}^{2} \mathrm{e}^{-t}$, and $\mathrm{z}=\mathrm{r}^{2} \mathrm{~s}$ sint, find the value of $\frac{\partial u}{\partial s}$ when $r=2, s=1, t=0$.
ii) A rectangular box without a lid is to be made from $12 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

Q4) a) Attempt any one of the following.
i) State Fubini's theorem. Write the formula for change of cartesian coordinates to polar coordinates in a double integral.
ii) Write the equations of relationship between rectangular coordinates (X, Y, Z) and the spherical coordinates (ρ, θ, ϕ). Hence find the rectangular coordinates of a point $\left(2, \frac{\pi}{2}, \frac{\pi}{2}\right)$ in spherical coordinates.
b) Attempt any one of the following.
i) Evaluate

$$
\int_{1}^{2} \int_{0}^{2 z} \int_{0}^{\ln x} x e^{-y} d y d x d z
$$

ii) Evaluate

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y
$$

by reversing the order of integration.

0 0

