P4675

[5822]-102 F.Y. B.Sc. MATHEMATICS MT - 112 : Calculus - I (CBCS) (2019 Pattern) (Semester - I) (Paper - II) (11112)

Time : 2 Hours] Instructions to the candidates: [Max. Marks : 35

1) All questions are compulsory.

2) Figures to the right indicate full marks.

Q1) Attempt any <u>Five</u> of the following:

a) Determine the set A = $\left\{ x \in \mathbb{R} / x < \frac{1}{x}, x > 0 \right\}$.

b) Find first four terms of the sequence (x_n) where $x_n = \frac{1}{n(n+1)}$.

c) Define monotone sequence of real numbers.

d) Find domain of the function $f(x) = \frac{1}{x-3}$.

- e) State boundedness theorem for continuous function on an interval.
- f) At what points the function $f(x) = \frac{x}{(x-2)(x-4)}$ is discontinuous?

Q2) a) Attempt any one of the following:

- i) State and prove triangle inequality for real numbers. Hence, prove that $|a-b| \ge ||a| |b||$, for all $a, b \in \mathbb{R}$.
- ii) Define limit of sequence of real numbers and prove that if limit of sequence exists then it is unique.

SEAT No. :

[Total No. of Pages : 3

[5]

b) Attempt any <u>one</u> of the following:

i) Evaluate:
$$\lim_{n \to \infty} \frac{2n^2 + 3}{5n^2 + 1}$$
.

ii) Discuss the continuity of the function f(x) at origin,

where
$$f(x) = \frac{e^{1/x}}{1 + e^{1/x}}$$
; for $x \neq 0$
= 0 ; for $x = 0$

- **Q3)** a) Attempt any <u>one</u> of the following:
 - i) Show that the sequence (x_n) defined by $x_1=1$ and $x_{n+1} = \sqrt{2 + x_n}, \forall n \in N$ is monotonic and bounded.
 - ii) Find the values of α and β , if the function f(x) is continuous in (-3, 3) where, $f(x) = x + \alpha$; -3 < x < 0 = 2x + 1; $0 \le x > 2$ $= \beta - x$; $2 \le x < 3$
 - b) Attempt any <u>one</u> of the following:

i) Find the infimum and supremum of the set $S = \left\{ 1 - \frac{(-1)^n}{n} / n \in N \right\}.$

ii) Let $f : A \to \mathbb{R}$ and *c* be the cluster point of A. If $\lim_{x \to c} f(x) = L$ and the sequence (x_n) converges to '*c*' such that $x_n \neq c$, for all $n \in N$ then prove that $(f(x_n))$ converges to L.

Q4) a) Attempt any one of the following: [6]
i) State squeeze theorem and hence show that
$$\lim_{x \to 0} x \cdot \cos\left(\frac{1}{x}\right) = 0.$$

[5822]-102 2

[6]

[4]

- ii) Let $f: I \to \mathbb{R}$ be continuous on I = [a, b]. If $K \in \mathbb{R}$ satisfies f(a) < K < f(b) then prove that there exist a point $c \in I$ between a and b such that f(c)=K.
- b) Attempt any <u>one</u> of the following:
 - i) If $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$ has limit at $x = c \in \mathbb{R}$, then prove that *f* is bounded on some neighbourhood of '*c*'.

[4]

ii) Let $A \subseteq \mathbb{R}$ and $f, g : A \to \mathbb{R}$. If *f* and *g* are continuous functions at $c \in A$ then prove that f+g and $f \cdot g$ are also continuous functions at x = c.

ઉલ છાછ