## Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any Five of the following:
a) Determine the set $\mathrm{A}=\left\{x \in \mathbb{R} / x<\frac{1}{x}, x>0\right\}$.
b) Find first four terms of the sequence $\left(x_{n}\right)$ where $x_{n}=\frac{1}{n(n+1)}$.
c) Define monotone sequence of real numbers.
d) Find domain of the function $f(x)=\frac{1}{x-3}$.
e) State boundedness theorem for continuous function on an interval.
f) At what points the function $f(x)=\frac{x}{(x-2)(x-4)}$ is discontinuous?

Q2) a) Attempt any one of the following:
i) State and prove triangle inequality for real numbers. Hence, prove that $|a-b| \geq||a|-|b|$, for all $a, b \in \mathbb{R}$.
ii) Define limit of sequence of real numbers and prove that if limit of sequence exists then it is unique.
b) Attempt any one of the following:
i) Evaluate $: \lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{5 n^{2}+1}$.
ii) Discuss the continuity of the function $f(x)$ at origin, where $f(x)=\frac{e^{1 / x}}{1+e^{1 / x}} ;$ for $x \neq 0$

$$
=0 \quad ; \text { for } x=0
$$

Q3) a) Attempt any one of the following:
i) Show that the sequence $\left(x_{n}\right)$ defined by $x_{1}=1$ and $x_{n+1}=\sqrt{2+x_{n}}, \forall n \in N$ is monotonic and bounded.
ii) Find the values of $\alpha$ and $\beta$, if the function $f(x)$ is continuous in

$$
\begin{aligned}
& (-3,3) \text { where, } f(x)=x+\alpha ;-3<x<0 \\
& =2 x+1 ; \quad 0 \leq x>2 \\
& =\beta-x ; 2 \leq x<3
\end{aligned}
$$

b) Attempt any one of the following:
i) Find the infimum and supremum of the set $\mathrm{S}=\left\{1-\frac{(-1)^{n}}{n} / n \in N\right\}$.
ii) Let $f: \mathrm{A} \rightarrow \mathbb{R}$ and $c$ be the cluster point of A . If $\lim _{x \rightarrow c} f(x)=\mathrm{L}$ and the sequence $\left(x_{n}\right)$ converges to ' $c$ ' such that $x_{n} \neq c$, for all $n \in N$ then prove that $\left(f\left(x_{n}\right)\right)$ converges to L .

Q4) a) Attempt any one of the following:
i) State squeeze theorem and hence show that $\lim _{x \rightarrow 0} x \cdot \cos \left(\frac{1}{x}\right)=0$.
ii) Let $f: \mathrm{I} \rightarrow \mathbb{R}$ be continuous on $\mathrm{I}=[a, b]$. If $\mathrm{K} \in \mathbb{R}$ satisfies $f(a)<\mathrm{K}<f(b)$ then prove that there exist a point $c \in \mathrm{I}$ between $a$ and $b$ such that $f(c)=\mathrm{K}$.
b) Attempt any one of the following:
i) If $\mathrm{A} \subseteq \mathbb{R}$ and $f: \mathrm{A} \rightarrow \mathbb{R}$ has limit at $x=c \in \mathbb{R}$, then prove that $f$ is bounded on some neighbourhood of ' $c$ '.
ii) Let $\mathrm{A} \subseteq \mathbb{R}$ and $f, g: \mathrm{A} \rightarrow \mathbb{R}$. If $f$ and $g$ are continuous functions at $c \in A$ then prove that $f+g$ and $f \cdot g$ are also continuous functions at $x=c$.

## $\cos 0580$

