F.Y. B.Sc.

MATHEMATICS

MT-122 : Calculus - II
(2019 Pattern) (Semester - II) (Paper - II) (12112)

Time : 2 Hours]
[Max. Marks : 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any Five of the following :
a) Whether every continuous function is differentiable? Justify
b) State Lagrange's Mean Value Theorem.
c) Determine whether the differential equation $(2 x+y) d x+(y+2 x) d y=0$ is exact or not.
d) Find the general solution of equation $\frac{d y}{d x}=-\frac{x}{y}$.
e) Find an integrating factor, so that $y d x-x d y=0$ is an exact differential equation.
f) Evaluate, $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.
g) Find $n^{\text {th }}$ derivative of the function $y=a^{3 x}, a>0$.

Q2) a) Attempt any ONE of the following :
i) State and prove Cauchy's Mean Value Theorem.
ii) Show that, $n^{\text {th }}$ derivative of $y=e^{a x} \cos (b x+c)$ is $y_{n}=r^{n} e^{a x}$ $\cos (b x+c+n \theta)$,
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.
b) Attempt any ONE of the following :
i) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{cc}x^{2} \sin \left(\frac{1}{x}\right) & \text {, if } x \neq 0 \\ 0 & \text {, if } x=0\end{array}\right.$ show that, f is differentiable at $x=0$.
ii) By using Taylor's series expansion, expand $x^{3}+7 x^{2}-6$ in powers of $(x-3)$.

Q3) a) Attempt any ONE of the following :
i) State and prove Leibnitz theorem for $n^{\text {th }}$ derivative of the product of two differentiable functions.
ii) If $p(x)$ is continuous on (a, b) then the general solution of the homogeneous equation $\frac{d y}{d x}+p(x) y=0$ on (a, b) is $y=c . e e^{\mathrm{Q}(x)}$, where $\mathrm{Q}(x)=\int p(x) d x, a<x<b$.
b) Attempt any ONE of the following :
i) Evaluate, $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$.
ii) Solve the differential equation, $\left(6 x y^{2}+2 y\right) d x+\left(12 x^{2} y+6 x+3\right) d y=0$.

Q4) a) Attempt any ONE of the following :
i) Explain the method of solving Homogeneous nonlinear equation $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$.
ii) Define exact differential equation. Explain the method of solving exact differential equation.
b) Attempt any ONE of the following :
i) Solve the Bernoulli's equation, $x^{2} \frac{d y}{d x}+2 x y=y^{3}$.
ii) Verify Rolle's theorem for the function,

$$
f(x)=2 x^{3}+x^{2}-4 x-2 \text { on }[-\sqrt{2}, \sqrt{2}] .
$$

\&み\&

