[5822]-201
 F.Y. B.Sc.
 MATHEMATICS
 MT-121: ANALYTICAL GEOMETRY
 (2019 Pattern) (Semester - II) (Paper - I) (12111)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) If the origin is shifted to the point ($-4,-7$), the axes remaining parallel to the original set of axes, find the co-ordinates of the point $(-2,5)$ with reference to the new set of axes.
b) If the axes are rotated through an angle 60° then write down equations of rotation.
c) If direction ratios of the line are 1, 2, 2 then find its direction cosines.
d) Write equation of a plane parallel to XY-plane.
e) Find equations of the line passing through $(2,-3,5)$ and whose direction ratios are 1, $-2,2$.
f) Find the centre of the sphere $x^{2}+y^{2}+z^{2}+2 x+2 y-2 z+3=0$.

Q2) a) Attempt any one of the following:
i) Reduce the equation $5 x^{2}+6 x y+5 y^{2}-10 x-6 y-3=0$ to its standard form.
ii) Show that the equation $(a x+b y+c z+d)+\lambda\left(a_{1} x+b_{1} y+c_{1} z+d_{1}\right)=0$ represents the system of planes through the line of intersection of the planes $a x+b y+c z+d=0$ and $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$.
b) Attempt any one of the following:
i) Discuss nature of the conic $5 x^{2}+4 x y+3 y^{2}+2 x+y=0$. Also find its centre if it is a central conic.
ii) Show that every equation of first degree in x, y, z represents a plane.

Q3) a) Attempt any one of the following:
i) Let the axes be rotated through an angle θ without shifting origin. Let $\mathrm{p}(\mathrm{x}, \mathrm{y})$ and $\mathrm{p}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ be the points with respect to original axes and new axes respectively. Show that $x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$.
ii) Show that equation of a plane which makes intercepts a, b, c on the co-ordinate axes is given by $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
b) Attempt any one of the following:
i) Find the co-ordinates of the point of intersection of the line $\frac{x+1}{1}=\frac{y+3}{3}=\frac{z-2}{-2}$ with the plane $3 x+4 y+5 z=5$.
ii) Find equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9$, $2 x+3 y+4 z=5$ and the point $(1,2,3)$.

Q4) a) Attempt any one of the following :
i) Find length of the perpendicular from the point $(1,2,3)$ to the line

$$
\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}
$$

ii) Prove that the plane section of a sphere is a circle.
b) Attempt any one of the following:
i) Find direction ratios of the line

$$
\begin{aligned}
& a x+b y+c z+d=0 \\
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0
\end{aligned}
$$

ii) Find the value of 'a' for which the plane $x+y+z=a \sqrt{3}$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$.

