[6054]-201
S.Y. B.Sc. (Regular)

MATHEMATICS

MT-241 : LINEAR ALGEBRA

(2019 Pattern) (CBCS) (Semester-IV) (24111)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following.
a) Find the solution set of $7 x-5 y=3$.
b) Let W_{1}, and W_{2} be any two subspaces of vector space V then. Write the condition under which $W_{1} \cup W_{2}$ is a subspace of V.
c) Determine whether the set $\{(1,0,0),(0,1,1),(1,1,1),(0,-2,3)\}$ is linearly dependent in \mathbb{R}^{3}.
d) Write standard basis of $M_{2 \times 2}(\mathbb{R})$, set of all 2×2 matrices with real entries.
e) Define dimension of a vector space.
f) Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be multiplication by matrix A . Determine whether T has an inverse where. $A=\left[\begin{array}{ll}6 & -3 \\ 4 & -2\end{array}\right]$
g) Let $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $\mathrm{T}(x, y)=(0, y+2)$. Determine whether T is linear transformation.

Q2) a) Attempt any one of the following.
i) Let $\mathrm{S}=\left\{u_{1}, u_{2} \ldots u_{r}\right\}$ be set of vectors in \mathbb{R}^{n}. If $r>n$ then prove that set S is linearly dependent.
ii) Let W_{1} and W_{2} be any two subspaces of vector V then prove that $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$ is subspace of V .
b) Attempt any one of the following.
i) Solve the following system by Gaussian elimination method.

$$
\begin{aligned}
& x+y+2 z=9 \\
& 2 x+4 y-3 z=1 \\
& 3 x+6 y-5 z=0
\end{aligned}
$$

ii) Solve the following system.

$$
\begin{aligned}
& 2 x+y-4 z+3 w=0 \\
& y+3 z-2 w=0 \\
& 2 x+3 y+2 z-w=0 \\
& -4 x-3 y+5 z-4 w=0
\end{aligned}
$$

Q3) a) Attempt any one of the following.
i) Let V be n dimensional vector space and $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots . v_{r}\right\}$ be linearly independent set in V then prove that S can be extended to a basis $\mathrm{S}^{1}=\left\{v_{1}, v_{2}, \ldots . v_{r}, v_{r+1}, \ldots v_{n}\right\}$ of V .
ii) If $A_{m \times n}$ and $B_{n \times p}$ are two matrices then prove that rank $(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
b) Attempt any one of the following.
i) Find a basis and dimension for the solution space of following linear system.

$$
\begin{aligned}
& x+y-z=0 \\
& -2 x-y+2 z=0 \\
& -x+z=0
\end{aligned}
$$

ii) Determine whether the set $\{(1,2,-3),(1,-3,2)(2,-1,5)\}$ is basis of \mathbb{R}^{3}.

Q4) a) Attempt any one of the following.
i) Let $\mathrm{T}_{1}: \mathrm{U} \rightarrow \mathrm{V}$ and $\mathrm{T}_{2}: \mathrm{V} \rightarrow \mathrm{W}$ be two linear transformations then prove that the composite transformation $\mathrm{T}_{2} \circ \mathrm{~T}_{1}: \mathrm{U} \rightarrow \mathrm{W}$ is a linear transformation.
ii) Prove that a function $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation if and only if $\mathrm{T}\left(k_{1} u_{1}+k_{2} u_{2}\right)=k_{1}, \mathrm{~T}\left(u_{1}\right)+k_{2} \mathrm{~T}\left(u_{2}\right)$, for any vectors u_{1} and u_{2} in V and scalars k_{1} and k_{2}.
b) Attempt any one of the following.
i) Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $\mathrm{T}(x, y, z)=(3 x+y+z, x-3 y-z)$. Find the matrix of T w.r.t the bases $\mathrm{B}=\{(1,1,1),(-1,0,1),(0,0,1)\}$ and $\mathrm{B}^{1}=\{(1,2)(-1,1)\}$ of \mathbb{R}^{3} and \mathbb{R}^{2} respectively.
ii) Find basis and dimension of range of linear transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Given by $\mathrm{T}(x, y, z)=(x+y+2 z, x+z, 2 x+y+3 z)$.

