Total No. of Questions : 4]

SEAT No. :

P965

[6054]-201

S.Y. B.Sc. (Regular) MATHEMATICS MT-241 : LINEAR ALGEBRA (2019 Pattern) (CBCS) (Semester-IV) (24111)

Time : 2 Hours]

[Max. Marks: 35

[5]

[Total No. of Pages : 3

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any five of the following.

- a) Find the solution set of 7x-5y = 3.
- b) Let W_1 , and W_2 be any two subspaces of vector space V then. Write the condition under which $W_1 \bigcup W_2$ is a subspace of V.
- c) Determine whether the set {(1, 0, 0), (0, 1, 1), (1, 1, 1), (0, -2, 3)} is linearly dependent in \mathbb{R}^3 .
- d) Write standard basis of $M_{2\times 2}(\mathbb{R})$, set of all 2×2 matrices with real entries.
- e) Define dimension of a vector space.
- f) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be multiplication by matrix A. Determine whether T has an inverse where. $A = \begin{bmatrix} 6 & -3 \\ 4 & -2 \end{bmatrix}$
- g) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y) = (0, y+2). Determine whether T is linear transformation.
- **Q2**) a) Attempt any one of the following. [5]
 - i) Let $S = \{u_1, u_2, ..., u_r\}$ be set of vectors in \mathbb{R}^n . If r > n then prove that set S is linearly dependent.
 - ii) Let W_1 and W_2 be any two subspaces of vector V then prove that $W_1 \cap W_2$ is subspace of V.

P.T.O.

- b) Attempt any one of the following.
 - i) Solve the following system by Gaussian elimination method.

x + y + 2z = 92x + 4y - 3z = 13x + 6y - 5z = 0

ii) Solve the following system.

2x + y - 4z + 3w = 0 y + 3z - 2w = 0 2x + 3y + 2z - w = 0-4x - 3y + 5z - 4w = 0

Q3) a) Attempt any one of the following.

- i) Let V be n dimensional vector space and $S = \{v_1, v_2, ..., v_r\}$ be linearly independent set in V then prove that S can be extended to a basis $S^1 = \{v_1, v_2, ..., v_r, v_{r+1}, ..., v_n\}$ of V.
- ii) If $A_{m \times n}$ and $B_{n \times n}$ are two matrices then prove that rank

 $(AB) \le \min \{ \operatorname{rank} (A), \operatorname{rank} (B) \}.$

- b) Attempt any one of the following.
 - i) Find a basis and dimension for the solution space of following linear system.

x + y - z = 0-2x - y + 2z = 0-x + z = 0

ii) Determine whether the set {(1, 2,-3), (1,-3, 2) (2,-1,5)} is basis of \mathbb{R}^3 .

[6054]-201

[5]

[5]

[5]

- *Q4*) a) Attempt any one of the following.
 - i) Let $T_1: U \rightarrow V$ and $T_2: V \rightarrow W$ be two linear transformations then prove that the composite transformation $T_2 \circ T_1: U \rightarrow W$ is a linear transformation.
 - ii) Prove that a function T : V \rightarrow W is a linear transformation if and only if T $(k_1 u_1 + k_2 u_2) = k_1, T(u_1) + k_2 T(u_2)$, for any vectors u_1 and u_2 in V and scalars k_1 and k_2 .
 - b) Attempt any one of the following.
 - i) Let T : $\mathbb{R}^3 \rightarrow \mathbb{R}^2$ be a linear transformation defined by T (x, y, z) = (3x + y + z, x - 3y - z). Find the matrix of T w.r.t the bases B={(1,1,1), (-1,0,1), (0,0,1)} and B¹={(1, 2) (-1, 1)} of \mathbb{R}^3 and \mathbb{R}^2 respectively.
 - ii) Find basis and dimension of range of linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$. Given by T(x, y, z) = (x + y + 2z, x + z, 2x + y + 3z).

[5]