Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following:
a) Find the solution set of the linear equation $5 x-4 y=7$.
b) Determine whether $\mathrm{W}=\{(x, y, z) / x+y+z=1\}$ is a subspace of \mathbb{R}^{3}, justify.
c) Define basis of vector space V.
d) Is the set $\mathrm{W}=\{(1,1,3),(2,2,6)\}$ linearly dependent? Justify.
e) Determine a basis for the row space of the matrix $A=\left[\begin{array}{cc}1 & 5 \\ 3 & 15\end{array}\right]$.
f) Use matrix multiplication to find the reflection of $(-1,3)$ about the x-axis.
g) Define Linear Isomorphism.

Q2) a) Attempt any one of the following:
i) If $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for the vector space V , then prove that any vector $v \in \mathrm{~V}$ can be uniquely expressed as a linear combination of the basis vectors.
ii) Prove that a non-empty subset W of a vector space V is a subspace of V if and only if $\alpha w_{1}+\beta w_{2} \in \mathrm{~W}$, for any scalars α, β and $w_{1}, w_{2} \in \mathrm{~W}$.
b) Attempt any one of the following:
i) Apply Gauss-Jordan method to solve the system of equations

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x-3 y+4 z=13 \\
& 3 x+4 y+5 z=40
\end{aligned}
$$

ii) Reduce the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 4 & -3 \\
3 & 6 & -5
\end{array}\right] \text { to row echelon form. }
$$

Q3) a) Attempt any one of the following:
i) Let V be n -dimensional vector space $(n \geq 1)$, then prove that any linearly independent subset of V with n elements is a basis.
ii) If A and B are two matrices of order $m \times n$, then prove that rank $(\mathrm{A}+\mathrm{B}) \leq \operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})$.
b) Attempt any one of the following:
i) Find the rank and nullity of the matrix A given by

$$
A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
5 & -4 & -4 \\
7 & -6 & 2
\end{array}\right]
$$

ii) Define co-ordinate vector and find the co-ordinate vector of the vector $\mathrm{V}=(4,5)$ relative to the basis $\mathrm{S}=\{(2,1),(-1,1)\}$.

Q4) a) Attempt any one of the following:
i) Define Kernal of a linear transformation and if $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear transformation, then prove that Kernal of T is a subspace of V .
ii) Let V is a Finite dimensonal vector space and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is linear transformation. Prove that T is injective if and only if $\operatorname{ker}(\mathrm{T})=\{0\}$.
b) Attempt any one of the following:
i) Find domain, codomain of T_{2} o T_{1} and compute $\left(\mathrm{T}_{2} \mathrm{o} \mathrm{T}_{1}\right)(x, y)$ if $\mathrm{T}_{1}(x, y)=(2 x,-3 y, x+y), \mathrm{T}_{2}(x, y, z)=(x,-y, x+y)$.
ii) Find the standard matrix for the linear transfrmation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by $\mathrm{T}(x, y, z)=(3 x-4 y+z, x+y-z, x+2 y+3 z)$.

$\cos 088080$

