- *Q4*) a) Attempt any one of the following.
 - i) State Fubini's theorem. Write the formula for change of cartesian coordinates to polar coordinates in a double integral.
 - ii) Write the equations of relationship between rectangular coordinates (X, Y, Z) and the spherical coordinates (ρ, θ, ϕ) . Hence find the

rectangular coordinates of a point $\left(2, \frac{\pi}{2}, \frac{\pi}{2}\right)$ in spherical coordinates.

- b) Attempt any one of the following.
 - i) Evaluate

$$\int_{1}^{2} \int_{0}^{2z} \int_{0}^{\ln x} x e^{-y} dy dx dz$$

ii) Evaluate

$$\int_{0}^{1}\int_{3y}^{3}e^{x^{2}}dx\,dy$$

by reversing the order of integration.

[5]

PA-2113

[5901]-102

S.Y. B.Sc.

MATHEMATICS (Paper - II) MT-232 (A) : Numerical Methods and its Applications (2019 Pattern) (CBCS) (Semester - III) (23112A)

Time : 2 Hours]

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of calculator is allowed.

Q1) Attempt any Five of the following : $[5 \times$

- a) Define absolute error.
- b) Write the formula to find first approximation x_1 in Regula-Falsi method with initial approximations a and b.
- c) Simplify E^3x^2 take h = 1.
- d) Prove that $\nabla(k) = 0$ where k is constant.
- e) Write the formula for $\frac{dy}{dx}$ at $x = x_n$ in terms of ∇ .
- f) Write Runge-Kutta second order formulae to solve $\frac{dy}{dx} = f(x, y)$ with initial condition $y(x_0) = y_0$.
- g) Write the formula for $y_1^{(n)}$ in modified Euler's method.

Q2) a) Attempt any ONE of the following : [5]

- i) Explain Bisection method to find root of f(x) = 0.
- ii) Derive Lagrange's interpolation formula.

SEAT No. :

[Total No. of Pages : 2

 $[5 \times 1 = 5]$

[Max. Marks : 35

b) Attempt any ONE of the following :

i) Evaluate
$$\int_{0}^{6} e^{x} dx$$
 by Simpson's $\frac{3}{8}$ rule using the data $e = 2.71$, $e^{2} = 7.38$, $e^{3} = 20.08$, $e^{4} = 54.59$, $e^{5} = 148.41$, $e^{6} = 403.42$.

ii) Solve
$$\frac{dy}{dx} = -y$$
 with $y(0) = 1$ by Euler's method. Take $h = 0.01$
and obtain $y(0.01)$, $y(0.02)$, $y(0.03)$

Q3) a) Attempt any ONE of the following :

i) Explain Taylor's series method to solve initial value problem.

ii) Explain modified Euler's method to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.

b) Attempt any ONE of the following :

i) Find the real root of $x^2 - 2x - 1 = 0$ between 1 and 3 by Regula-Falsi method (perform two iterations)

ii) Prove that
$$\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}.$$

Q4) a) Attempt any ONE of the following : [5]

- i) Write the rules for round-off the number to significant figure.
- ii) Derive the formula for $\frac{dy}{dx}$ at $x = x_0$ in terms of Δ .

b) Attempt any ONE of the following :

- i) Find $\sqrt[4]{74}$ by Newton-Raphson method. Perform two iterations.
- ii) Find y when x = 0.1 by Runge-Kutta fourth order formula given $\frac{dy}{dx} = x + y$ with y(0) = 1.

2

[5901]-102

[5]

[5]

[5]