Q4) a) Attempt any one of the following.
i) State Fubini's theorem. Write the formula for change of cartesian coordinates to polar coordinates in a double integral.
ii) Write the equations of relationship between rectangular coordinates (X, Y, Z) and the spherical coordinates (ρ, θ, ϕ). Hence find the rectangular coordinates of a point $\left(2, \frac{\pi}{2}, \frac{\pi}{2}\right)$ in spherical coordinates.
b) Attempt any one of the following.
i) Evaluate

$$
\int_{1}^{2} \int_{0}^{2 z} \int_{0}^{\ln x} x e^{-y} d y d x d z
$$

ii) Evaluate

$$
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y
$$

by reversing the order of integration.

0 0

\square

> [5901]-102

S.Y. B.Sc. MATHEMATICS (Paper - II) MT-232 (A) : Numerical Methods and its Applications (2019 Pattern) (CBCS) (Semester - III) (23112A)

Time : 2 Hours]

[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.
3) Use of calculator is allowed.

Q1) Attempt any Five of the following:

a) Define absolute error.
b) Write the formula to find first approximation x_{1} in Regula-Falsi method with initial approximations a and b.
c) Simplify $\mathrm{E}^{3} x^{2}$ take $h=1$.
d) Prove that $\nabla(k)=0$ where k is constant.
e) Write the formula for $\frac{d y}{d x}$ at $x=x_{n}$ in terms of ∇.
f) Write Runge-Kutta second order formulae to solve $\frac{d y}{d x}=f(x, y)$ with initial condition $y\left(x_{0}\right)=y_{0}$.
g) Write the formula for $y_{1}^{(n)}$ in modified Euler's method.

Q2) a) Attempt any ONE of the following :
i) Explain Bisection method to find root of $f(x)=0$.
ii) Derive Lagrange's interpolation formula.
b) Attempt any ONE of the following :
i) Evaluate $\int_{0}^{6} e^{x} d x$ by Simpson's $\frac{3}{8}$ rule using the data $\mathrm{e}=2.71, \mathrm{e}^{2}$ $=7.38, \mathrm{e}^{3}=20.08, \mathrm{e}^{4}=54.59, \mathrm{e}^{5}=148.41, \mathrm{e}^{6}=403.42$.
ii) Solve $\frac{d y}{d x}=-y$ with $y(0)=1$ by Euler's method. Take $h=0.01$ and obtain $y(0.01), y(0.02), y(0.03)$

Q3) a) Attempt any ONE of the following :
i) Explain Taylor's series method to solve initial value problem.
ii) Explain modified Euler's method to solve $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.
b) Attempt any ONE of the following :
i) Find the real root of $x^{2}-2 x-1=0$ between 1 and 3 by RegulaFalsi method (perform two iterations)
ii) Prove that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$.

Q4) a) Attempt any ONE of the following:
i) Write the rules for round-off the number to significant figure.
ii) Derive the formula for $\frac{d y}{d x}$ at $x=x_{0}$ in terms of Δ.
b) Attempt any ONE of the following :
i) Find $\sqrt[4]{74}$ by Newton-Raphson method. Perform two iterations.
ii) Find y when $x=0.1$ by Runge-Kutta fourth order formula given

$$
\frac{d y}{d x}=x+y \text { with } y(0)=1 .
$$

