\square

S.Y. B.Sc.
 MATHEMATICS (Paper - II)

MT - 232(A) : Numerical Methods and its Applications
(2019 Pattern) (Credit System) (Semester - III) (23112 A)

Time: 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any FIVE of the following: $[5 \times 1=5]$
a) Define Absolute error
b) Find the root x_{1} of $x^{3}-18=0$ by Newton - Raphson method with $x_{0}=2.5$.
c) Simplify $\mathrm{E}^{2} x^{3}$ take $h=1$
d) Evaluate $\Delta\left(a^{5 x-7}\right)$ take $h=1$
e) Evaluate $\int_{0}^{1} x^{2} d x$ by Trapezoidal rule take $h=0.5$
f) Write Runge-Kutta second order formula to solve $\frac{d y}{d x}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$
g) Write the formula for $y_{1}^{(n+1)}$ in Modified Euler's method

Q2) a) Attempt any ONE of the following:
i) Explain Newton-Raphson method
ii) Derive Lagrange's interpolation formula
b) Attempt any ONE of the following :
i) Evaluate $\int_{4}^{5.2} \log _{e} x d x$ by Simpson's $\frac{3}{8}$ rule take $h=0.2$
ii) Find y (0.1) using Runge-Kutta second order method given that

$$
\frac{d y}{d x}=x+y \text { with } y(0)=1 \text { and } h=0.1
$$

Q3) a) Attempt any ONE of the following :
i) Explain Taylor's series method to solve initial value problem.
ii) Explain Euler's method to solve $\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$
b) Attempt any ONE of the following :
i) Find $\sqrt{10}$ by Newton-Raphson method (Two iterations)
ii) Find log 3.7 using Lagrange's interpolation formula from the following table

x	3	3.5	4
$\log x$	1.0986	1.2527	1.3863

Q4) a) Attempt any ONE of the following:
i) Write the rules for round-off number to the significant figures.
ii) Derive the formula for $\frac{d y}{d x}$ at $x=x_{0}$ in terms of forward difference operator Δ.
b) Attempt any ONE of the following :
i) Find $\sqrt[3]{18}$ by bisection method lies between 2 and 3 . Perform three iterations.
ii) Find y when $x=1$ by Runge-Kutta fourth order method given $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$

ㅁㅁ

