P4755

SEAT No. :

[Total No. of Pages : 2

[5822]-302

S.Y. B.Sc.

MATHEMATICS (Paper - II)

MT - 232(A) : Numerical Methods and its Applications (2019 Pattern) (Credit System) (Semester - III) (23112 A)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

Q1) Attempt any FIVE of the following : $[5 \times 1 = 5]$

- a) Define Absolute error
- b) Find the root x_1 of $x^3-18 = 0$ by Newton Raphson method with $x_0 = 2.5$.
- c) Simplify $E^2 x^3$ take h = 1
- d) Evaluate $\Delta (a^{5x-7})$ take h = 1
- e) Evaluate $\int_0^1 x^2 dx$ by Trapezoidal rule take h = 0.5
- f) Write Runge-Kutta second order formula to solve $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$
- g) Write the formula for $y_1^{(n+1)}$ in Modified Euler's method

Q2) a) Attempt any ONE of the following : [5]

- i) Explain Newton-Raphson method
- ii) Derive Lagrange's interpolation formula
- b) Attempt any ONE of the following : [5]

i) Evaluate
$$\int_{4}^{5.2} \log_e x \, dx$$
 by Simpson's $\frac{3}{8}$ rule take $h = 0.2$

P.T.O.

- ii) Find y (0.1) using Runge-Kutta second order method given that $\frac{dy}{dx} = x + y \text{ with } y(0) = 1 \text{ and } h = 0.1$
- *Q3*) a) Attempt any ONE of the following :
 - i) Explain Taylor's series method to solve initial value problem.

ii) Explain Euler's method to solve
$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

- b) Attempt any ONE of the following :
 - i) Find $\sqrt{10}$ by Newton-Raphson method (Two iterations)
 - ii) Find log 3.7 using Lagrange's interpolation formula from the following table

X	3	3.5	4
$\log x$	1.0986	1.2527	1.3863

Q4) a) Attempt any ONE of the following :

- i) Write the rules for round-off number to the significant figures.
- ii) Derive the formula for $\frac{dy}{dx}$ at $x = x_0$ in terms of forward difference operator Δ .
- b) Attempt any ONE of the following :
 - i) Find $\sqrt[3]{18}$ by bisection method lies between 2 and 3. Perform three iterations.
 - ii) Find y when x = 1 by Runge-Kutta fourth order method given $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1$

2

[5822]-302

[5]

[5]

[5]

[5]