K.T.S.P.Mandal's
 Hutatma Rajguru Mahavidyalaya, Rajgurunagar

 Tal-Khed, Dist.-Pune 410505.
F.Y.BSc (Computer Science)

Semester-II

Electronics Paper-II

Subject- ELC-122 - Basics of Computer Organization

According to new CBCS syllabus w.e.f.2019-2020

Prof.Aparna P.Kulkarni

Department of Computer Science
Hutatma Rajguru Mahavidyalaya, Rajgurunagar.

Unit-II- Shift Registers and Counters

$>$ Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Ring Counter using D flip-flop.
> Counters: Synchronous and Asynchronous type, 3 bit Up-Down counter, Concept of modulus Counters.

Introduction:

A Flip-flop stores a single bit data. However when we need to work with storage and manipulation of data words, then group of specific flip-flops need to be connected. A D flip-flop is capable of storing a single bit. However when several D flip-flop are connected together we can store several bits at the same time. Such a group of D flip-flop is called a register.

Shift Registers:

Shift Register is a group of flip flops used to store multiple bits of data. The bits stored in such registers can be made to move within the registers and in/out of the registers by applying clock pulses. Shift registers are very useful when the format of data needs to be changed (from serial to parallel or parallel to serial). Shift registers do not count. They use only D flip-flop. Types of Shift Registers:
i. SISO (Serial In Serial Out)
ii. SIPO (Serial in Parallel Out)
iii. PISO (Parallel In Serial Out)
iv. PIPO (Parallel In Parallel Out)

SISO Shift Register: (Right Shift)

Data is entered into flip-flop I. Data is shifted out of flip-flop III, after each clock pulse. Initially, all flip-flops are reset to 0 . Suppose data is 1 . After $1^{\text {st }}$ falling edge of the clock $\mathrm{Q}_{2}=1$. However Q_{1} and Q_{0} are 0 . After $2^{\text {nd }}$ falling edge $\mathrm{Q}_{2}=1$, which acts as data to flip-flop (II), is shifted out to Q_{1}. So $Q_{1}=1$. After third clock pulse Q_{1}, which is 1 , gets shifted out of Q_{0}.

If there is a string of databits at the input, then at subsequent clock pulses new bits will be accepted while previously accepted data gets shifted out continuously. T

After clock	Data i/p	$\mathbf{Q}_{\mathbf{0}}$
1	1	X
2	1	X
3	0	1
4	X	1
5	X	0
6	X	X

SISO shift register will be the slowest of all registers. More the number of flip-flops in a register more will be the time taken for complete shifting of data. ' n ' bits of data take ' 2 n ' seconds to be completely accepted, loaded and shifted out of the register. So the shifting time also depends on the number of bits to be accepted and shifted.

SIPO Shift Register:

Here data is entered serially bit by bit after each clock pulse. However all the outputs are seen simultaneously after each clock pulse. If we consider a 3 bit register, 3 clock pulses are required to load data, but at the end of 3rd clock pulse all the 3 bits of data are simultaneously available at the respective outputs. So it is called Serial in Parallel Out shift register.

After Clock	Data \mathbf{i} / \mathbf{p}	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$	
1	1	1	0	0	

2	0	0	1	0	
3	1	1	0	1	\rightarrow Parallel data

PIPO Shift Register:

In this data is applied simultaneously to all the flip flops. The outputs of all the Flip-flops are viewed simultaneously. A single clock pulse is sufficient to load and Shift all bits of data. This is fastest type of shift register.

PISO Shift Register:

Here data is accepted parallely by all the flip-flops. However data moves serially through each flip-flop.

Ring Counter:

In a ring counter, the data once loaded will be continuously shifted within the flip-flops. No new data will be loaded; Output of last flipflop will act as data input to the first flipflop. Such arrangement is very useful for data sequencing and timing purposes and in applications like rolling display. They are also used to develop control section of a digital system.

Assume the data preloaded into the flip-flop as 0010 (I, II, III, and IV). After $1^{\text {st }}$ clock pulse the data at the output of respective flip-flops are $0001\left(\mathrm{Q}_{3}\right.$ shifts to $\mathrm{Q}_{2}, \mathrm{Q}_{2}$ shifts to $\mathrm{Q}_{1}, \mathrm{Q}_{1}$ shifts to Q_{0} and Q_{0} shifts back to the Q_{3}). After $2^{\text {nd }}$ clock pulse, the output data is 1000 . After $3^{\text {rd }}$ clock pulse, the output data is 0100 and after $4^{\text {th }}$ clock pulse, the output data is 0010 and same movements will be repeated.

After clock	Loaded data			
	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$
	0	0	1	0
1	0	0	0	1
2	1	0	0	0
3	0	1	0	0
4	0	0	1	0
5	0	0	0	1

Applications of Shift Register:

- Shift register is used as Parallel to serial converter, which converts the parallel data into serial data. It is utilized at the transmitter section after Analog to Digital Converter ADC block.
- Shift register is used as Serial to parallel converter, which converts the serial data into parallel data. It is utilized at the receiver section before Digital to Analog Converter DAC block.
- Shift register along with some additional gates generate the sequence of zeros and ones. Hence, it is used as sequence generator.
- Shift registers are also used as counters. There are two types of counters based on the type of output from right most D flip-flop is connected to the serial input. Those are Ring counter and Johnson Ring counter.

Counters:

Counter is a sequential circuit. A digital circuit which is used for counting pulses is known counter. Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied. Apart from counting they can also be used for frequency division and sequencing. A high frequency clock pulse can be divided to get smaller frequency with counter.

Essentially, a counter employs JK flip-flop in toggle mode. The number of flip-flops decides the maximum events (clock pulses) that can be counted by a counter.

A single flip flop can count 2 states 1 and 0,2 flip flops can count $00,01,10,11$, i.e., 4 states, 3 flip flops can count $000,001,010,01,100,101,110,111$, i.e., 8 states. So in general n flops can count 2^{n} states/clock pulses.

Counters are broadly classified as

1. Asynchronous or ripple counters.
2. Synchronous counters.

Further each counter can be sub classified as

1. Up counter
2. Down Counter

The up counter counts upwards with each clock pulse, i.e., $00 \rightarrow 99$.
The down counter counts downwards with each clock pulse. The initial count is the biggest one, i.e., $99 \rightarrow 00$.

Many times both these facilities are combined together to get combined up down counter. Some counters also have provision for presetting or clearing the counts (Programmable counters).

Asynchronous or ripple counters:

This is also called a ripple binary counter as the clock is provided to each flip-flop just like ripples spreading in water.

The clock is connected only to the first flip-flop. The output of the $1^{\text {st }}$ flip flop acts as clock to the second flip-flop. The output of $2^{\text {nd }}$ flip-flop acts as clock to the third and so on. Thus second flip-flop can respond only after the first. Third flip flop can respond only after $1^{\text {st }}$ and $2^{\text {nd }}$ and so on. So we find that it is very slow. Moreover the speed further reduces due to addition of propagation delays of each flip-flop. This speed difference is considerable when a counter is used to count large sequences. These counters are used for low to medium frequency applications. However they are comparatively easy in construction using lesser hardware and have simpler operation.

3-Bit asynchronous Up Counter:

Let initially all flip-flops be reset to 0 . So $\mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=000$. After $1^{\text {st }}$ clock pulse's falling edge has arrived, flip-flop (I) toggles. So $\mathrm{Q}_{\mathrm{A}}=1$. However Q_{A} which acts as clock to flip-flop (II) has changed from 0 to 1 , (rising edge). So output of flip-flop (II) remains at 0 . Third flip-flop output also remains at 0 . So after 1"clock pulse, $\mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=001$.

When $2^{\text {nd }}$ clock pulse comes Q_{A} toggles again. It goes from 1 to 0 . This acts as a falling clock edge for the flip-flop (II) so its output $\mathrm{Q}_{\mathrm{B}}=1$. However Q_{B} which acts as clock to flip flop (III) was changed from 0 to 1 . So flip-flop (Ill) maintains the previous output 0 as it is. After second clock pulse, $\mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=010$.

When $3^{\text {rd }}$ clock pulse arrives Q_{A} toggles back to $1 . Q_{B}$ does not change because Q_{A} (clock for flip-flop (II)) has changed from 0 to 1 . Q_{C} also does not change. After $3^{\text {rd }}$ clock pulse we have $\mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=011$.

When $4^{\text {th }}$ clock pulse arrives Q_{A} changes from 1 to 0 . So now Q_{B} also changes from 1 to 0 . This Q_{B} acts as clock to flip-flop (III). So now third flip-flop responds to the clock and its output changed to 1 . So after $4^{\text {th }}$ clock pulse, $\mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{A}}=100$. In this way, all the 8 states (000 to 111) are obtained. After 111 , the counter automatically comes back to 000 and counting is repeated.

3-Bit asynchronous Down Counter:

Use $\overline{\mathrm{Q}_{A}}, \overline{\mathrm{Q}_{\mathrm{B}}}$ and Q_{C} to act as clocks to the next flip-flops instead of $\mathrm{Q}_{A} \mathrm{Q}_{\mathrm{B}}$ and Q_{C}. The outputs will be seen at $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}}$ and Q_{C}.

Let $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$ be reset to 0 . So $\mathrm{Q}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{A}}=000$. However $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \overline{\mathrm{Q}_{\mathrm{C}}}=\overline{11} 1 . \overline{\mathrm{Wh}} \mathrm{T}^{\text {st }}$ clock comes, Q_{A} toggles from 0 to 1 , so Q_{A} will go from T to 0 . Flip-flop (II) receives a falling clock edge. So its output changes from 0 to 1 . Since Q_{B}, has changed from 0 to $1, Q_{B}$ changes from 1 to 0 . So flipflop (III) also receives a falling edge. Its output Q_{C} also goes to 1 . So after $1^{\text {st }}$ clock pulse, $\mathrm{Q}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{A}}=111$.

When 2nd clock pulse arrives, Q_{A} toggles from 1 to $0 . \mathrm{Q}_{\mathrm{A}}$ change from 0 to 1 . Flip-flops (II) and (III) will not change state. So after $2^{\text {nd }}$ clock pulse, we have $\mathrm{Q}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{A}}=110$.

When $3^{\text {rd }}$ pulse arrives, Q_{A} toggles back to $1 . \mathrm{Q}_{\mathrm{A}}$ changes from 1 to 0 . Now flip flop (II) responds. Its output Q_{B} changes from 1 to 0 . However, flip flop (III) does not respond as Q_{B} has changed from 0 to 1 . Thus after $3^{\text {rd }}$ clock pulse we have $\mathrm{Q}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{A}}=101$.

In this way, the counter proceeds towards 000 after 8 clock pulses. In the next clock pulse, the output goes back to 111 and the same sequence of counting is repeated.

\mathbf{C}	\mathbf{B}	\mathbf{A}	Counted state
0	0	0	0

Truth Table:

1	1	1	7
1	1	0	6
1	0	1	5
1	0	0	4
0	1	1	3
0	1	0	2
0	0	1	1
0	0	0	0

Note: Q_{A} toggles with the clock. Q_{B} changes only when Q_{A} changes from 1 to 0 , i.e. Q_{A} changes from 0 to 1 (rising edge of Q_{A}). Similarly Q_{C} changes only when Q_{B} changes from 1 to 0 i.e. Q_{B} changes from 0 to 1 (rising edge of Q_{B}).

Synchronous Counter:

They are also called as parallel counters as clock pulses are provided simultaneously to all flipflops. All flip-flops are responds simultaneously and not one by one. As a result, the process of counting is speeded up. The total propagation delay here will be that of any one flip-flop as all of them respond at once. Circuit becomes more complex with addition of extra logic gates. These counters are used in high frequency applications.

3 Bit Synchronous Up Counter:

The first flipflop toggles for every falling edge of the clock as J_{A} and K_{A} both are connected to Vcc (Logic high). The $2^{\text {nd }}$ flipflop will toggle when $\mathrm{Q}_{\mathrm{A}}=1$ and clock goes from high to low simultaneously. The $3^{\text {rd }}$ flipflop toggles when A and B both are high and clock goes from high to low simultaneously. Initially let ABC will be 000. At that instant flipflop (1) sees J_{A} and K_{A} as 1 . At that instant flipflop (2) sees inputs as 0, i.e., J_{B} and $K_{B}=0$ as Q_{A} was 0 . Similarly Q_{A} and Q_{B} both were 0 . So J_{C} and K_{C} both are 0 . When the first falling edge of clock comes $\mathrm{A}=1 \mathrm{~B}=0$ and $\mathrm{C}=0$ so we get 001 . After the $1^{\text {st }}$ clock pulse has passed, the inputs seen by each flipflop is as follows.

Flipflop (1) sees $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$.
Flipflop (2) sees $J_{B}=K_{B}=A \quad$ i.e. $J_{B}=K_{B}=1$
Flipflop (3) sees $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \cdot \mathrm{Q}_{\mathrm{B}}=1.0=0$
When the next falling edge of clock comes, A becomes $0, \mathrm{~B}=1$ and $\mathrm{C}=0$. (Previous state as J_{C} $=K_{C}=0$) so we get 010 .

After $2^{\text {nd }}$ clock pulse the inputs seen by different flip-flops are as
Flipflop (1) sees $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
Flipflop (2) sees $\mathrm{J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=\mathrm{A}=0$
Flipflop (3) sees $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{A} . \mathrm{B}=0.1=0$

When the third falling edge of clock comes $\mathrm{A}=1$ (toggles), $\mathrm{B}=1$ (previous state), $\mathrm{C}=0$
(previous state). So we get 011.
After $3^{\text {rd }}$ clock pulse has passed the inputs seen by different flip-flops are
Flipflop (1) sees $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
Flipflop (2) sees $\mathrm{J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=\mathrm{A}=1$
Flipflop (3) sees $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{A} . \mathrm{B}=1.1=1$
When the next falling edge comes $\mathrm{A}=0, \mathrm{~B}=0$ and $\mathrm{C}=1$. So we get 100 .
In this way the counts keep proceeding until 111. In the next clock pulse, the output goes back to 000 and the same sequence is repeated.

Truth Table:

\mathbf{C}	\mathbf{B}	\mathbf{A}	Counted state
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7
0	0	0	0

3 Bit Synchronous Down Counter:

In three bit synchronous down counter, the counts proceed in the following way $000,111,110$, 101....000, 111.

Outputs are taken at A, B and C but inputs to the flip-flops are from $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ and $\overline{\mathrm{Q}}_{\mathrm{C}} \cdot \overline{\text { Let }}$ the outputs $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ and $\mathrm{Q}_{\mathrm{C}}=0$ initially. So $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$ and $\mathrm{Q}_{\mathrm{C}}=1$. Before the clock pulse comes the inputs seen by various flip-flops are

Flipflop 1: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
Flipflop 2: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{A}}=1$
Flipflop 3: $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \cdot \mathrm{Q}_{\mathrm{B}}=1.1=1$

So when the falling edge of clock comes $\mathrm{A}=1$ (toggles), $\mathrm{B}=1$ (toggles), $\mathrm{C}=1$ (toggles). So we get 111 .

After the $1^{\text {st }}$ clock pulse $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$. So $\mathrm{Q}_{\mathrm{A}}=0, \overline{\mathrm{Q}_{\mathrm{B}}}=0$ an $\overline{\mathrm{Q}_{C}}=0$. The $\overline{\text { new }}$ inputs seen by different flip-flops are

Flipflop 1: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
Flipflop 2: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{A}}=0$
Flipflop 3: $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \cdot \mathrm{Q}_{\mathrm{B}} \overline{=0.0}=0$
When the next clock pulse comes $\mathrm{A}=0$ (toggles), $\mathrm{B}=1$ (previous state), $\mathrm{C}=1$ (previous state).
So we get state 110 .
Now $\overline{\mathrm{Q}_{\mathrm{A}}}=1, \mathrm{Q}_{\mathrm{B}}=0$ and $\mathrm{Q}_{\mathrm{C}}=\overline{=}$. Now after the clock has passed next input seen by each flipflop is

Flipflop 1: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
Flipflop 2: $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{A}} \overline{=} 0$
Flipflop 3: $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \cdot \mathrm{Q}_{\mathrm{B}} \overline{=1} .0=0$

When the next falling edge of clock comes $\mathrm{J}_{\mathrm{A}}=1$ (toggles), $\mathrm{J}_{\mathrm{B}}=0$ (toggles), $\mathrm{J}_{\mathrm{C}}=1$ (state).So we get state 101 .
In this way the counting sequence decrements after each clock pulse until we get 000 and the same sequence repeats.

Truth Table:

\mathbf{C}	\mathbf{B}	\mathbf{A}	Counted state
0	0	0	0
1	1	1	7
1	1	0	6
1	0	1	5
1	0	0	4
0	1	1	3
0	1	0	2
0	0	1	1
0	0	0	0

Modulus of a Counter:

Modulus of a counter tells us the number of states the counter can count. When we say mod 10 counter, it means it can count 10 states. Similarly mod 16 counter can count 16 states. If ' m ' is the number of states to be counted and ' n ' be the number of flip-flops then $m<2$. Thus 4 flip-flops are required for $\bmod 9$ to $\bmod 16.3$ flip-flops are required for $\bmod 5$ to $\bmod 8$. If we have 4 flip-flops we can count 16 states. However if we want to count only 10 states then the remaining six states must be skipped. So immediately after counting $10^{\text {th }}$ state, all the flipflops will be reset to 0 and the same 10 states will be counted again and again.

IC 7490 can be used mod 2 to mod 10 counter.
IC 7493 is a mod 16 counter. it can count 16 states from 0000 to 1111.

References:

1. A text book of Basics of Computer Organization of vision publication by H.R.Arvind.
2. A text book of Basics of Computer Organization of Nirali publication by Dr.J.A.Bangali
3. www.google.com
