

P-966
[Total No. of Pages : 3
[6054]-202
S.Y. B.Sc.

MATHEMATICS

MT-242(A) : Vector Calculus
 (2019 Pattern) (CBCS) (Semester - IV) (24112A)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) All questions are compulsory.
2) Figures to the right indicate full marks.

Q1) Attempt any five of the following :
a) Evaluate $\lim _{t \rightarrow 0}\left[e^{-t} \cos \bar{i}+e^{-t} \sin \bar{j}+e^{-t} \bar{k}\right]$.
b) Find the speed along the curve $\bar{r}(t)=(1+2 t) \bar{i}+(1+3 t) \bar{j}+(4-6 t) \bar{k}$ from $t=0$ to $t=1$.
c) Define flow integral of a vector field along a curve C.
d) Evaluate $\int_{C}(x+y-z) d x$ along the curve $\bar{r}(t)=t \bar{i}-\bar{j}+t^{2} \bar{k}, 0 \leq t \leq 1$.
e) State Green's theorem in the plane in normal form.
f) Give parametric representation of the cone $Z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
g) Show that the vector field $\bar{F}=(x+y-z) \bar{i}+(2 x-y+3 z) \bar{j}$ is solenoidal.

Q2) a) Attempt any one of the following :
i) If $\bar{r}(t)$ is a differentiable vector function of t and the length of $\bar{r}(t)$ is constant then prove that $\bar{r} \cdot \frac{d \bar{r}}{d t}=0$.
ii) If $\overline{\mathrm{F}}$ is a vector field and C is any closed curve in a region D then prove that the field $\overline{\mathrm{F}}$ is conservative if and only if $\oint_{C} \overline{\mathrm{~F}} . d \bar{r}=0$.
b) Attempt any one of the following :
i) Find the arclength parameter of the curve $\bar{r}(t)=4 \cos t \bar{i}+4 \sin t \bar{j}+3 t \bar{k}$ from the point $t=0$.
ii) Find the unit tangent vector $\overline{\mathrm{T}}$, principal unit normal vector $\overline{\mathrm{N}}$ for the plane curve, $\bar{r}(t)=(\cos t+t \sin t) \bar{i}+(\sin t-t \cos t) \bar{j}, t>0$.

Q3) a) Attempt any one of the following :
i) State Green's theorem in the plane in tangential form and use it to find counter clock wise circulation for the field $\bar{F}=(x+y) \bar{i}-\left(x^{2}+y^{2}\right) \bar{j}$ where C is the triangle bounded by $y=0, x=1$ and $y=x$.
ii) Let C be a smooth curve joining the point A to the point B in the plane and is parametrized by $\bar{r}(t)$. Let f be a differentiable function with a continuous gradient vector $\overline{\mathrm{F}}=\nabla f$ on a domain D containing C . Then prove that $\int_{\mathrm{C}} \overline{\mathrm{F}} . d r=f(\mathrm{~B})-f(\mathrm{~A})$.
b) Attempt any one of the following :
i) Find the workdone by the force field $\overline{\mathrm{F}}=x \bar{i}+3 x y \bar{j}-(x+z) \bar{k}$ over the curve $\bar{r}(t)=(1-t) \bar{i}+(4+t) \bar{j}+(2-t) \bar{k}, 0 \leq t \leq 1$.
ii) Integrate $\mathrm{G}(x, y, z)=x^{2}$ over the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.

Q4) a) Attempt any one of the following :
i) Define the curl of a vector field $\overline{\mathrm{F}}$ and determine whether the field $\bar{F}=\left(4 y^{2}+\frac{3 x^{2} y}{z^{2}}\right) \bar{i}+\left(8 x y+\frac{x^{3}}{z^{2}}\right) \bar{j}+\left(11-\frac{2 x^{3} y}{z^{3}}\right) \bar{k}$ is conservative.
ii) Define surface integral of a scalar function and evaluate $\iint_{S} 6 x y d S$ where S is the portion of the plane $x+y+z=1$ that lies in the first octant and is in the front of the $y z$ - plane.
b) Attempt any one of the following :
i) Use the divergence theorem to evaluate $\iint_{S} \overline{\mathrm{~F}} \cdot \bar{n} d \sigma$ where $\overline{\mathrm{F}}=(3 x+z) \bar{i}+\left(y^{2}-\sin x z\right) \bar{j}+\left(x z+y e^{x}\right) \bar{k}$ and S is the surface of the box $0 \leq x \leq 1,0 \leq y \leq 3,0 \leq z \leq 2$.
ii) State stoke's theorem and use it to evaluate $\iint_{S} \operatorname{curl} \bar{F} \cdot \bar{n} d \sigma$ where $\overline{\mathrm{F}}=x z \bar{i}+y \bar{j}+x y \bar{k}$, such that S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies in the cylinder $x^{2}+y^{2}=1$ above $x-y$ plane.

\&\&\&

